plyranges 1.0.3
Ranges
revistedIn Bioconductor there are two classes, IRanges
and GRanges
,
that are standard data structures for representing genomics data.
Throughout this document I refer to either of these classes as Ranges
if an
operation can be performed on either class, otherwise I explicilty mention if
a function is approrpriate for an IRanges
or GRanges
.
Ranges
objects can either represent sets of integers as IRanges
(which have start, end and width attributes)
or represent genomic intervals (which have additional attributes, sequence name,
and strand) as GRanges
. In addition, both types of Ranges
can store information
about their intervals as metadata columns (for example GC content
over a genomic interval).
Ranges
objects follow the tidy data principle: each row
of a Ranges
object corresponds to an interval, while each column will represent
a variable about that interval, and generally each object will represent a
single unit of observation (like gene annotations).
Consequently, Ranges
objects provide a powerful representation for reasoning
about genomic data. In this vignette, you will learn more about Ranges
objects
and how via grouping, restriction and summarisation you can perform common data
tasks.
Ranges
To construct an IRanges
we require that there are at least two columns that represent at either a
starting coordinate, finishing coordinate or the width of the interval.
suppressPackageStartupMessages(library(plyranges))
set.seed(100)
df <- data.frame(start=c(2:-1, 13:15),
width=c(0:3, 2:0))
# produces IRanges
rng <- df %>% as_iranges()
rng
## IRanges object with 7 ranges and 0 metadata columns:
## start end width
## <integer> <integer> <integer>
## [1] 2 1 0
## [2] 1 1 1
## [3] 0 1 2
## [4] -1 1 3
## [5] 13 14 2
## [6] 14 14 1
## [7] 15 14 0
To construct a GRanges
we require a column that represents that sequence name (
contig or chromosome id), and an optional column to represent the strandedness
of an interval.
# seqname is required for GRanges, metadata is automatically kept
grng <- df %>%
transform(seqnames = sample(c("chr1", "chr2"), 7, replace = TRUE),
strand = sample(c("+", "-"), 7, replace = TRUE),
gc = runif(7)) %>%
as_granges()
grng
## GRanges object with 7 ranges and 1 metadata column:
## seqnames ranges strand | gc
## <Rle> <IRanges> <Rle> | <numeric>
## [1] chr1 2-1 + | 0.76255108229816
## [2] chr1 1 - | 0.669021712383255
## [3] chr2 0-1 + | 0.204612161964178
## [4] chr1 -1-1 - | 0.357524853432551
## [5] chr1 13-14 - | 0.359475114848465
## [6] chr1 14 + | 0.690290528349578
## [7] chr2 15-14 + | 0.535811153938994
## -------
## seqinfo: 2 sequences from an unspecified genome; no seqlengths
Sometimes you want to modify a genomic interval by altering the width of the
interval while leaving the start, end or midpoint of the coordinates unaltered.
This is achieved with the mutate
verb along with anchor_*
adverbs.
The act of anchoring fixes either the start, end, center coordinates of the
Range
object, as shown in the figure and code below and anchors are used in
combination with either mutate
or stretch
.
rng <- as_iranges(data.frame(start=c(1, 2, 3), end=c(5, 2, 8)))
grng <- as_granges(data.frame(start=c(1, 2, 3), end=c(5, 2, 8),
seqnames = "seq1",
strand = c("+", "*", "-")))
mutate(rng, width = 10)
## IRanges object with 3 ranges and 0 metadata columns:
## start end width
## <integer> <integer> <integer>
## [1] 1 10 10
## [2] 2 11 10
## [3] 3 12 10
mutate(anchor_start(rng), width = 10)
## IRanges object with 3 ranges and 0 metadata columns:
## start end width
## <integer> <integer> <integer>
## [1] 1 10 10
## [2] 2 11 10
## [3] 3 12 10
mutate(anchor_end(rng), width = 10)
## IRanges object with 3 ranges and 0 metadata columns:
## start end width
## <integer> <integer> <integer>
## [1] -4 5 10
## [2] -7 2 10
## [3] -1 8 10
mutate(anchor_center(rng), width = 10)
## IRanges object with 3 ranges and 0 metadata columns:
## start end width
## <integer> <integer> <integer>
## [1] -2 7 10
## [2] -3 6 10
## [3] 1 10 10
mutate(anchor_3p(grng), width = 10) # leave negative strand fixed
## GRanges object with 3 ranges and 0 metadata columns:
## seqnames ranges strand
## <Rle> <IRanges> <Rle>
## [1] seq1 -4-5 +
## [2] seq1 -7-2 *
## [3] seq1 3-12 -
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths
mutate(anchor_5p(grng), width = 10) # leave positve strand fixed
## GRanges object with 3 ranges and 0 metadata columns:
## seqnames ranges strand
## <Rle> <IRanges> <Rle>
## [1] seq1 1-10 +
## [2] seq1 2-11 *
## [3] seq1 -1-8 -
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths
Similarly, you can modify the width of an interval using the stretch
verb.
Without anchoring, this function will extend the interval in either direction
by an integer amount. With anchoring, either the start, end or midpoint are
preserved.
rng2 <- stretch(anchor_center(rng), 10)
rng2
## IRanges object with 3 ranges and 0 metadata columns:
## start end width
## <integer> <integer> <integer>
## [1] -2 8 11
## [2] -3 7 11
## [3] 0 10 11
stretch(anchor_end(rng2), 10)
## IRanges object with 3 ranges and 0 metadata columns:
## start end width
## <integer> <integer> <integer>
## [1] -12 8 21
## [2] -13 7 21
## [3] -10 10 21
stretch(anchor_start(rng2), 10)
## IRanges object with 3 ranges and 0 metadata columns:
## start end width
## <integer> <integer> <integer>
## [1] -2 18 21
## [2] -3 17 21
## [3] 0 20 21
stretch(anchor_3p(grng), 10)
## GRanges object with 3 ranges and 0 metadata columns:
## seqnames ranges strand
## <Rle> <IRanges> <Rle>
## [1] seq1 -9-5 +
## [2] seq1 -8-2 *
## [3] seq1 3-18 -
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths
stretch(anchor_5p(grng), 10)
## GRanges object with 3 ranges and 0 metadata columns:
## seqnames ranges strand
## <Rle> <IRanges> <Rle>
## [1] seq1 1-15 +
## [2] seq1 2-12 *
## [3] seq1 -7-8 -
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths
Ranges
can be shifted left or right. If strand information is available
we can also shift upstream or downstream.
shift_left(rng, 10)
## IRanges object with 3 ranges and 0 metadata columns:
## start end width
## <integer> <integer> <integer>
## [1] -9 -5 5
## [2] -8 -8 1
## [3] -7 -2 6
shift_right(rng, 10)
## IRanges object with 3 ranges and 0 metadata columns:
## start end width
## <integer> <integer> <integer>
## [1] 11 15 5
## [2] 12 12 1
## [3] 13 18 6
shift_upstream(grng, 10)
## GRanges object with 3 ranges and 0 metadata columns:
## seqnames ranges strand
## <Rle> <IRanges> <Rle>
## [1] seq1 -9--5 +
## [2] seq1 2 *
## [3] seq1 13-18 -
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths
shift_downstream(grng, 10)
## GRanges object with 3 ranges and 0 metadata columns:
## seqnames ranges strand
## <Rle> <IRanges> <Rle>
## [1] seq1 11-15 +
## [2] seq1 2 *
## [3] seq1 -7--2 -
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths
Ranges
plyranges
introduces a new class of Ranges
called RangesGrouped
,
this is a similiar idea to the grouped data.frame\tibble
in dplyr
.
Grouping can act on either the core components or the metadata columns of
a Ranges
object.
It is most effective when combined with other verbs such as mutate()
,
summarise()
, filter()
, reduce_ranges()
or disjoin_ranges()
.
grng <- data.frame(seqnames = sample(c("chr1", "chr2"), 7, replace = TRUE),
strand = sample(c("+", "-"), 7, replace = TRUE),
gc = runif(7),
start = 1:7,
width = 10) %>%
as_granges()
grng_by_strand <- grng %>%
group_by(strand)
grng_by_strand
## GRanges object with 7 ranges and 1 metadata column:
## Groups: strand [2]
## seqnames ranges strand | gc
## <Rle> <IRanges> <Rle> | <numeric>
## [1] chr2 1-10 - | 0.889453538926318
## [2] chr2 2-11 + | 0.180407245177776
## [3] chr2 3-12 + | 0.629390850430354
## [4] chr1 4-13 - | 0.989564136601985
## [5] chr1 5-14 + | 0.130288870073855
## [6] chr2 6-15 - | 0.330660525709391
## [7] chr2 7-16 - | 0.865120546659455
## -------
## seqinfo: 2 sequences from an unspecified genome; no seqlengths
Ranges
The verb filter
can be used to restrict rows in the Ranges
.
Note that grouping will cause the filter
to act within each group
of the data.
grng %>% filter(gc < 0.3)
## GRanges object with 2 ranges and 1 metadata column:
## seqnames ranges strand | gc
## <Rle> <IRanges> <Rle> | <numeric>
## [1] chr2 2-11 + | 0.180407245177776
## [2] chr1 5-14 + | 0.130288870073855
## -------
## seqinfo: 2 sequences from an unspecified genome; no seqlengths
# filtering by group
grng_by_strand %>% filter(gc == max(gc))
## GRanges object with 2 ranges and 1 metadata column:
## Groups: strand [2]
## seqnames ranges strand | gc
## <Rle> <IRanges> <Rle> | <numeric>
## [1] chr2 3-12 + | 0.629390850430354
## [2] chr1 4-13 - | 0.989564136601985
## -------
## seqinfo: 2 sequences from an unspecified genome; no seqlengths
We also provide the convience methods filter_by_overlaps
and
filter_by_non_overlaps
for restricting by any overlapping Ranges
.
ir0 <- data.frame(start = c(5,10, 15,20), width = 5) %>%
as_iranges()
ir1 <- data.frame(start = 2:6, width = 3:7) %>%
as_iranges()
ir0
## IRanges object with 4 ranges and 0 metadata columns:
## start end width
## <integer> <integer> <integer>
## [1] 5 9 5
## [2] 10 14 5
## [3] 15 19 5
## [4] 20 24 5
ir1
## IRanges object with 5 ranges and 0 metadata columns:
## start end width
## <integer> <integer> <integer>
## [1] 2 4 3
## [2] 3 6 4
## [3] 4 8 5
## [4] 5 10 6
## [5] 6 12 7
ir0 %>% filter_by_overlaps(ir1)
## IRanges object with 2 ranges and 0 metadata columns:
## start end width
## <integer> <integer> <integer>
## [1] 5 9 5
## [2] 10 14 5
ir0 %>% filter_by_non_overlaps(ir1)
## IRanges object with 2 ranges and 0 metadata columns:
## start end width
## <integer> <integer> <integer>
## [1] 15 19 5
## [2] 20 24 5
Ranges
The summarise
function will return a DataFrame
because the information required
to return a Ranges
object is lost. It is often most useful to use summarise()
in combination with the group_by()
family of functions.
ir1 <- ir1 %>%
mutate(gc = runif(length(.)))
ir0 %>%
group_by_overlaps(ir1) %>%
summarise(gc = mean(gc))
## DataFrame with 2 rows and 2 columns
## query gc
## <integer> <numeric>
## 1 1 0.675554534769617
## 2 2 0.635795166483149
Ranges
A join acts on two GRanges objects, a query and a subject.
query <- data.frame(seqnames = "chr1",
strand = c("+", "-"),
start = c(1, 9),
end = c(7, 10),
key.a = letters[1:2]) %>%
as_granges()
subject <- data.frame(seqnames = "chr1",
strand = c("-", "+"),
start = c(2, 6),
end = c(4, 8),
key.b = LETTERS[1:2]) %>%
as_granges()
The join operator is relational in the sense that metadata
from the query and subject ranges is retained in the joined range. All join operators in the plyranges
DSL generate a set of hits based on overlap or proximity of ranges and use those hits to merge the two
datasets in different ways.
There are four supported matching algorithms: overlap,
nearest, precede, and follow. We can further restrict the
matching by whether the query is completely within the subject, and
adding the directed suffix ensures that matching ranges have the
same direction (strand).
The first function, join_overlap_intersect()
will return a Ranges
object where the start, end, and width coordinates correspond to the amount of any overlap between the left and right input Ranges
. It also returns any metadatain the subject range if the subject overlaps the query.
intersect_rng <- join_overlap_intersect(query, subject)
intersect_rng
## GRanges object with 2 ranges and 2 metadata columns:
## seqnames ranges strand | key.a key.b
## <Rle> <IRanges> <Rle> | <factor> <factor>
## [1] chr1 2-4 + | a A
## [2] chr1 6-7 + | a B
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths
The join_overlap_inner()
function will return the Ranges
in the query that
overlap any Ranges
in the subject. Like the join_overlap_intersect()
function
metadata of the subject Range
is returned if it overlaps the query.
inner_rng <- join_overlap_inner(query, subject)
inner_rng
## GRanges object with 2 ranges and 2 metadata columns:
## seqnames ranges strand | key.a key.b
## <Rle> <IRanges> <Rle> | <factor> <factor>
## [1] chr1 1-7 + | a A
## [2] chr1 1-7 + | a B
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths
We also provide a convienence method called find_overlaps
that computes the same result as join_overlap_inner()
.
find_overlaps(query, subject)
## GRanges object with 2 ranges and 2 metadata columns:
## seqnames ranges strand | key.a key.b
## <Rle> <IRanges> <Rle> | <factor> <factor>
## [1] chr1 1-7 + | a A
## [2] chr1 1-7 + | a B
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths
The join_overlap_left()
method will perform an outer left join.
First any overlaps that are found will be returned similar to join_overlap_inner()
. Then any non-overlapping ranges will be returned, with missing values on the metadata columns.
left_rng <- join_overlap_left(query, subject)
left_rng
## GRanges object with 3 ranges and 2 metadata columns:
## seqnames ranges strand | key.a key.b
## <Rle> <IRanges> <Rle> | <factor> <factor>
## [1] chr1 1-7 + | a A
## [2] chr1 1-7 + | a B
## [3] chr1 9-10 - | b <NA>
## -------
## seqinfo: 2 sequences from an unspecified genome; no seqlengths
Compared with filter_by_overlaps()
above, the overlap left join expands the
Ranges
to give information about each interval on the query Ranges
that
overlap those on the subject Ranges
as well as the intervals on the left that do not overlap any range on the right.
We also provide methods for finding nearest, preceding or following Ranges
. Conceputally this is identical to our approach for finding
overlaps, except the semantics of the join are different.
join_nearest(ir0, ir1)
## IRanges object with 4 ranges and 1 metadata column:
## start end width | gc
## <integer> <integer> <integer> | <numeric>
## [1] 5 9 5 | 0.780358511023223
## [2] 10 14 5 | 0.780358511023223
## [3] 15 19 5 | 0.780358511023223
## [4] 20 24 5 | 0.780358511023223
join_follow(ir0, ir1)
## IRanges object with 4 ranges and 1 metadata column:
## start end width | gc
## <integer> <integer> <integer> | <numeric>
## [1] 5 9 5 | 0.777584439376369
## [2] 10 14 5 | 0.603324356488883
## [3] 15 19 5 | 0.780358511023223
## [4] 20 24 5 | 0.780358511023223
join_precede(ir0, ir1) # nothing precedes returns empty `Ranges`
## IRanges object with 0 ranges and 1 metadata column:
## start end width | gc
## <integer> <integer> <integer> | <numeric>
join_precede(ir1, ir0)
## IRanges object with 5 ranges and 1 metadata column:
## start end width | gc
## <integer> <integer> <integer> | <numeric>
## [1] 2 4 3 | 0.777584439376369
## [2] 3 6 4 | 0.827303449623287
## [3] 4 8 5 | 0.603324356488883
## [4] 5 10 6 | 0.491231821943074
## [5] 6 12 7 | 0.780358511023223
This example is taken from the Bioconductor support site.
We have two Ranges
objects. The first contains single nucleotide positions
corresponding to an intensity measurement such as a ChiP-seq experiment,
while the other contains coordinates for two genes of interest.
We want to identify which positions in the intensties
Ranges
overlap the
genes, where each row corresponds to a position that overlaps a single gene.
First we create the two Ranges
objects
intensities <- data.frame(seqnames = "VI",
start = c(3320:3321,3330:3331,3341:3342),
width = 1) %>%
as_granges()
intensities
## GRanges object with 6 ranges and 0 metadata columns:
## seqnames ranges strand
## <Rle> <IRanges> <Rle>
## [1] VI 3320 *
## [2] VI 3321 *
## [3] VI 3330 *
## [4] VI 3331 *
## [5] VI 3341 *
## [6] VI 3342 *
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths
genes <- data.frame(seqnames = "VI",
start = c(3322, 3030),
end = c(3846, 3338),
gene_id=c("YFL064C", "YFL065C")) %>%
as_granges()
genes
## GRanges object with 2 ranges and 1 metadata column:
## seqnames ranges strand | gene_id
## <Rle> <IRanges> <Rle> | <factor>
## [1] VI 3322-3846 * | YFL064C
## [2] VI 3030-3338 * | YFL065C
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths
Now to find where the positions overlap each gene, we can perform an overlap join. This will automatically carry over the gene_id information as well as their coordinates (we can drop those by only selecting the gene_id).
olap <- join_overlap_inner(intensities, genes) %>%
select(gene_id)
olap
## GRanges object with 8 ranges and 1 metadata column:
## seqnames ranges strand | gene_id
## <Rle> <IRanges> <Rle> | <factor>
## [1] VI 3320 * | YFL065C
## [2] VI 3321 * | YFL065C
## [3] VI 3330 * | YFL065C
## [4] VI 3330 * | YFL064C
## [5] VI 3331 * | YFL065C
## [6] VI 3331 * | YFL064C
## [7] VI 3341 * | YFL064C
## [8] VI 3342 * | YFL064C
## -------
## seqinfo: 1 sequence from an unspecified genome; no seqlengths
Several positions match to both genes. We can count them using summarise
and grouping by the start
position:
olap %>%
group_by(start) %>%
summarise(n = n())
## DataFrame with 6 rows and 2 columns
## start n
## <integer> <integer>
## 1 3320 1
## 2 3321 1
## 3 3330 2
## 4 3331 2
## 5 3341 1
## 6 3342 1
It’s also possible to group by overlaps. Using this approach we can count the number of overlaps that are greater than 0.
grp_by_olap <- ir0 %>%
group_by_overlaps(ir1)
grp_by_olap
## IRanges object with 6 ranges and 2 metadata columns:
## Groups: query [2]
## start end width | gc query
## <integer> <integer> <integer> | <numeric> <integer>
## [1] 5 9 5 | 0.827303449623287 1
## [2] 5 9 5 | 0.603324356488883 1
## [3] 5 9 5 | 0.491231821943074 1
## [4] 5 9 5 | 0.780358511023223 1
## [5] 10 14 5 | 0.491231821943074 2
## [6] 10 14 5 | 0.780358511023223 2
grp_by_olap %>%
mutate(n_overlaps = n())
## IRanges object with 6 ranges and 3 metadata columns:
## Groups: query [2]
## start end width | gc query n_overlaps
## <integer> <integer> <integer> | <numeric> <integer> <integer>
## [1] 5 9 5 | 0.827303449623287 1 4
## [2] 5 9 5 | 0.603324356488883 1 4
## [3] 5 9 5 | 0.491231821943074 1 4
## [4] 5 9 5 | 0.780358511023223 1 4
## [5] 10 14 5 | 0.491231821943074 2 2
## [6] 10 14 5 | 0.780358511023223 2 2
Of course we can also add overlap counts via the count_overlaps()
function.
ir0 %>%
mutate(n_overlaps = count_overlaps(., ir1))
## IRanges object with 4 ranges and 1 metadata column:
## start end width | n_overlaps
## <integer> <integer> <integer> | <integer>
## [1] 5 9 5 | 4
## [2] 10 14 5 | 2
## [3] 15 19 5 | 0
## [4] 20 24 5 | 0
We provide convienence functions via rtracklayer
and GenomicAlignments
for reading/writing the following data formats to/from Ranges
objects.
plyranges functions |
File Format |
---|---|
read_bam() |
BAM |
read_bed() /write_bed() |
BED |
read_bedgraph() / write_bedgraph() |
BEDGraph |
read_narrowpeaks() / write_narrowpeaks() |
narrowPeaks |
read_gff() / write_gff() |
GFF(1-3) / GTF |
read_bigwig() / write_bigwig() |
BigWig |
read_wig() / write_wig() |
Wig |
For users already familiar with the IRanges
and GenomicRanges
we provide
mappings to the plyranges
API.
For G
Ranges`` objects all functions ignore
any strandedness, unless the strand of the range is anchored.
plyranges functions |
Description | GenomicRanges/IRanges command |
---|---|---|
anchor_(start/end/center/3p/5p) |
Fix the start/end/center/ coordinates or positive/negative strand of range. Can be used in combination with any of the following |
Available in functions that have a fix argument. |
mutate(x, width = width + modifier) |
Modify the width of a Ranges |
resize |
stretch(x, extend) |
Extend the start and end coordinates in opposite directions by a fixed amount. | start(x)<- start(x) - extend%/%2 , end(x) <- end(x) + extend%/%2 |
plyranges functions |
Description | GenomicRanges/IRanges command |
---|---|---|
shift_[left/right/downstream/upstream](x, shift) |
Shift the coordinates of the interval (left/right/downstream/upstream) by an integer amount. | shift_right corresponds to shift |
flank_[left/right/downstream/upstream](x, width) |
Generates flanking regions of size width left/right/downstream/upstream/ |
corresponds to flank |
These are usual set-operations that act on the sets of the
Ranges
represented in x and y. By default these operations will ignore
any strand information. The directed versions of these functions will
take into account strand.
plyranges functions |
Description | GenomicRanges/IRanges command |
---|---|---|
[intersect/setdiff/union/]_Ranges |
Set operations between two Ranges , ignoring strand. |
intersect/setdiff/union/ with ignore.strand = FALSE |
[intersect/setdiff/union/]_anchored_Ranges |
As above taking into account strandedness. |
We provide infix operators and the verbs between and span to the represent element wise range operations. These
map to the pintersect/punion/psetdiff/pgap/punion(fill.gap = FALSE)
functions.
The verb filter
corresponds to subset
, while filter_by_[overlaps/non_overlaps]
corresponds to subsetByOverlaps
.
The summarise
verb is most similar to the aggregate
methods defined in GenomicRanges/IRanges
.
The reduce_ranges/disjoin_ranges
correspond to the reduce/disjoin
methods.
However, the former methods allow additional summarisation.
The compute_coverage(x)
method corresponds to [I/G]Ranges(coverage(x))
.
For GRanges
objects all functions ignore
any strandedness, unless the suffix directed
is added to the funciton call
plyranges function |
Description | GenomicRanges/IRanges command |
---|---|---|
find_overlaps(x, y, maxgap, minoverlap) |
Returns a Ranges object with any range in y that overlaps x . Appends the metadata in y and its genomic intervals to the returning Ranges . |
findOverlaps(x,y, maxgap, minoverlap, type = "any") with expanding x and y by their hits and appending the mcols in y . |
group_by_overlaps(x, y, maxgap, minoverlap) |
Returns a GroupedRanges object grouped by the query hits. | Same as above with an additional column called query which contains the queryHits. |
count_overlaps(x, y, maxgap, minoverlap) |
Returns an integer vector (used with mutate ) |
countOverlaps(x, y, maxgap, minoverlap, type = "any") |
join_overlap_self(x, maxgap, minoverlap) |
Returns a Ranges object with any range that overlaps itself. |
findOverlaps(x,x, maxgap, minoverlap, type = "any") |
join_overlap_inner(x, y, maxgap, minoverlap) |
Finds the intersecting Ranges that overlap in x and y . Returns a Ranges object with the metadata from x and y . |
findOverlapsPairs(x,y, maxgap, minoverlap, type = "any") + pintersect . |
*_within |
Adding suffix within will find overlaps |
Makes type = "within" |
*_includes |
inverse of within functions | - |
join_nearest[_left/right/up/downstream](x,y) |
Finds nearest neighbour Ranges between x and y . |
nearest + reindexing to return a Ranges object. |
join_precede[_left/right/up/downstream](x,y) |
Finds Ranges in x that preced y |
precedes + reindexing to return a Ranges object. |
join_follow[_left/right/up/downstream](x,y) |
Finds Ranges in x that follow y |
precedes + reindexing to return a Ranges object. |
sessionInfo()
## R version 3.5.0 (2018-04-23)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.04.4 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.7-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.7-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats4 parallel stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] ggplot2_2.2.1 plyranges_1.0.3 GenomicRanges_1.32.3
## [4] GenomeInfoDb_1.16.0 IRanges_2.14.10 S4Vectors_0.18.2
## [7] BiocGenerics_0.26.0 BiocStyle_2.8.2
##
## loaded via a namespace (and not attached):
## [1] SummarizedExperiment_1.10.1 tidyselect_0.2.4
## [3] xfun_0.1 reshape2_1.4.3
## [5] purrr_0.2.5 lattice_0.20-35
## [7] colorspace_1.3-2 htmltools_0.3.6
## [9] rtracklayer_1.40.3 yaml_2.1.19
## [11] XML_3.98-1.11 rlang_0.2.1
## [13] pillar_1.2.3 glue_1.2.0
## [15] BiocParallel_1.14.1 bindrcpp_0.2.2
## [17] plyr_1.8.4 matrixStats_0.53.1
## [19] GenomeInfoDbData_1.1.0 bindr_0.1.1
## [21] stringr_1.3.1 zlibbioc_1.26.0
## [23] Biostrings_2.48.0 munsell_0.4.3
## [25] gtable_0.2.0 evaluate_0.10.1
## [27] labeling_0.3 Biobase_2.40.0
## [29] knitr_1.20 highr_0.6
## [31] Rcpp_0.12.17 backports_1.1.2
## [33] scales_0.5.0 DelayedArray_0.6.0
## [35] XVector_0.20.0 Rsamtools_1.32.0
## [37] digest_0.6.15 stringi_1.2.2
## [39] bookdown_0.7 dplyr_0.7.5
## [41] grid_3.5.0 rprojroot_1.3-2
## [43] tools_3.5.0 bitops_1.0-6
## [45] magrittr_1.5 lazyeval_0.2.1
## [47] RCurl_1.95-4.10 tibble_1.4.2
## [49] tidyr_0.8.1 pkgconfig_2.0.1
## [51] Matrix_1.2-14 assertthat_0.2.0
## [53] rmarkdown_1.9 R6_2.2.2
## [55] GenomicAlignments_1.16.0 compiler_3.5.0