pareg 1.4.1
This vignette is an introduction to the usage of pareg
. It estimates pathway enrichment scores by regressing differential expression p-values of all genes considered in an experiment on their membership to a set of biological pathways. These scores are computed using a regularized generalized linear model with LASSO and network regularization terms. The network regularization term is based on a pathway similarity matrix (e.g., defined by Jaccard similarity) and thus classifies this method as a modular enrichment analysis tool (Huang, Sherman, and Lempicki 2009).
if (!require("BiocManager", quietly = TRUE)) {
install.packages("BiocManager")
}
BiocManager::install("pareg")
We start our analysis by loading the pareg
package and other required libraries.
library(ggraph)
library(tidyverse)
library(ComplexHeatmap)
library(enrichplot)
library(pareg)
set.seed(42)
For the sake of this introductory example, we generate a synthetic pathway database with a pronounced clustering of pathways.
group_num <- 2
pathways_from_group <- 10
gene_groups <- purrr::map(seq(1, group_num), function(group_idx) {
glue::glue("g{group_idx}_gene_{seq_len(15)}")
})
genes_bg <- paste0("bg_gene_", seq(1, 50))
df_terms <- purrr::imap_dfr(
gene_groups,
function(current_gene_list, gene_list_idx) {
purrr::map_dfr(seq_len(pathways_from_group), function(pathway_idx) {
data.frame(
term = paste0("g", gene_list_idx, "_term_", pathway_idx),
gene = c(
sample(current_gene_list, 10, replace = FALSE),
sample(genes_bg, 10, replace = FALSE)
)
)
})
}
)
df_terms %>%
sample_n(5)
## term gene
## 1 g1_term_9 g1_gene_12
## 2 g1_term_5 g1_gene_7
## 3 g2_term_2 g2_gene_2
## 4 g1_term_3 bg_gene_47
## 5 g1_term_8 g1_gene_1
Before starting the actual enrichment estimation, we compute pairwise pathway similarities with pareg
’s helper function.
mat_similarities <- compute_term_similarities(
df_terms,
similarity_function = jaccard
)
hist(mat_similarities, xlab = "Term similarity")
We can see a clear clustering of pathways.
Heatmap(
mat_similarities,
name = "Similarity",
col = circlize::colorRamp2(c(0, 1), c("white", "black"))
)
We then select a subset of pathways to be activated. In a performance evaluation, these would be considered to be true positives.
active_terms <- similarity_sample(mat_similarities, 5)
active_terms
## [1] "g2_term_6" "g2_term_3" "g2_term_3" "g2_term_2" "g2_term_8"
The genes contained in the union of active pathways are considered to be differentially expressed.
de_genes <- df_terms %>%
filter(term %in% active_terms) %>%
distinct(gene) %>%
pull(gene)
other_genes <- df_terms %>%
distinct(gene) %>%
pull(gene) %>%
setdiff(de_genes)
The p-values of genes considered to be differentially expressed are sampled from a Beta distribution centered at \(0\). The p-values for all other genes are drawn from a Uniform distribution.
df_study <- data.frame(
gene = c(de_genes, other_genes),
pvalue = c(rbeta(length(de_genes), 0.1, 1), rbeta(length(other_genes), 1, 1)),
in_study = c(
rep(TRUE, length(de_genes)),
rep(FALSE, length(other_genes))
)
)
table(
df_study$pvalue <= 0.05,
df_study$in_study, dnn = c("sig. p-value", "in study")
)
## in study
## sig. p-value FALSE TRUE
## FALSE 34 17
## TRUE 1 28
Finally, we compute pathway enrichment scores.
fit <- pareg(
df_study %>% select(gene, pvalue),
df_terms,
network_param = 1, term_network = mat_similarities
)
## + '/home/biocbuild/.cache/R/basilisk/1.12.1/0/bin/conda' 'create' '--yes' '--prefix' '/home/biocbuild/.cache/R/basilisk/1.12.1/pareg/1.4.1/pareg' 'python=3.8.13' '--quiet' '-c' 'anaconda'
## + '/home/biocbuild/.cache/R/basilisk/1.12.1/0/bin/conda' 'install' '--yes' '--prefix' '/home/biocbuild/.cache/R/basilisk/1.12.1/pareg/1.4.1/pareg' 'python=3.8.13'
## + '/home/biocbuild/.cache/R/basilisk/1.12.1/0/bin/conda' 'install' '--yes' '--prefix' '/home/biocbuild/.cache/R/basilisk/1.12.1/pareg/1.4.1/pareg' '-c' 'anaconda' 'python=3.8.13' 'tensorflow=2.10.0' 'tensorflow-probability=0.14.0'
The results can be exported to a dataframe for further processing…
fit %>%
as.data.frame() %>%
arrange(desc(abs(enrichment))) %>%
head() %>%
knitr::kable()
term | enrichment |
---|---|
g2_term_6 | -0.6759553 |
g2_term_3 | -0.6003887 |
g2_term_2 | -0.5817953 |
g2_term_4 | -0.4232832 |
g2_term_8 | -0.4122331 |
g1_term_2 | 0.3979995 |
…and also visualized in a pathway network view.
plot(fit, min_similarity = 0.1)
To provide a wider range of visualization options, the result can be transformed into an object which is understood by the functions of the enrichplot package.
obj <- as_enrichplot_object(fit)
dotplot(obj) +
scale_colour_continuous(name = "Enrichment Score")
## Scale for colour is already present.
## Adding another scale for colour, which will replace the existing scale.
treeplot(obj) +
scale_colour_continuous(name = "Enrichment Score")
## Scale for colour is already present.
## Adding another scale for colour, which will replace the existing scale.
sessionInfo()
## R version 4.3.1 (2023-06-16)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.2 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.17-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/.cache/R/basilisk/1.12.1/pareg/1.4.1/pareg/lib/libmkl_rt.so.1; LAPACK version 3.9.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] grid stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] pareg_1.4.1 tfprobability_0.15.1 tensorflow_2.11.0
## [4] enrichplot_1.20.0 ComplexHeatmap_2.16.0 lubridate_1.9.2
## [7] forcats_1.0.0 stringr_1.5.0 dplyr_1.1.2
## [10] purrr_1.0.1 readr_2.1.4 tidyr_1.3.0
## [13] tibble_3.2.1 tidyverse_2.0.0 ggraph_2.1.0
## [16] ggplot2_3.4.2 BiocStyle_2.28.0
##
## loaded via a namespace (and not attached):
## [1] splines_4.3.1 later_1.3.1 bitops_1.0-7
## [4] ggplotify_0.1.1 filelock_1.0.2 polyclip_1.10-4
## [7] basilisk.utils_1.12.1 lifecycle_1.0.3 rprojroot_2.0.3
## [10] doParallel_1.0.17 globals_0.16.2 processx_3.8.2
## [13] lattice_0.21-8 MASS_7.3-60 magrittr_2.0.3
## [16] sass_0.4.6 rmarkdown_2.23 jquerylib_0.1.4
## [19] yaml_2.3.7 remotes_2.4.2 httpuv_1.6.11
## [22] doRNG_1.8.6 sessioninfo_1.2.2 pkgbuild_1.4.2
## [25] reticulate_1.30 cowplot_1.1.1 DBI_1.1.3
## [28] RColorBrewer_1.1-3 keras_2.11.1 pkgload_1.3.2.1
## [31] zlibbioc_1.46.0 BiocGenerics_0.46.0 RCurl_1.98-1.12
## [34] yulab.utils_0.0.6 tweenr_2.0.2 circlize_0.4.15
## [37] GenomeInfoDbData_1.2.10 IRanges_2.34.1 S4Vectors_0.38.1
## [40] ggrepel_0.9.3 listenv_0.9.0 tidytree_0.4.2
## [43] parallelly_1.36.0 codetools_0.2-19 DOSE_3.26.1
## [46] ggforce_0.4.1 tidyselect_1.2.0 shape_1.4.6
## [49] aplot_0.1.10 farver_2.1.1 viridis_0.6.3
## [52] doFuture_1.0.0 matrixStats_1.0.0 stats4_4.3.1
## [55] base64enc_0.1-3 jsonlite_1.8.7 GetoptLong_1.0.5
## [58] ellipsis_0.3.2 tidygraph_1.2.3 iterators_1.0.14
## [61] foreach_1.5.2 ggnewscale_0.4.9 progress_1.2.2
## [64] tools_4.3.1 treeio_1.24.1 Rcpp_1.0.11
## [67] glue_1.6.2 gridExtra_2.3 tfruns_1.5.1
## [70] here_1.0.1 xfun_0.39 usethis_2.2.2
## [73] qvalue_2.32.0 GenomeInfoDb_1.36.1 withr_2.5.0
## [76] BiocManager_1.30.21 fastmap_1.1.1 basilisk_1.12.1
## [79] fansi_1.0.4 callr_3.7.3 digest_0.6.33
## [82] timechange_0.2.0 R6_2.5.1 mime_0.12
## [85] gridGraphics_0.5-1 colorspace_2.1-0 Cairo_1.6-0
## [88] GO.db_3.17.0 RSQLite_2.3.1 utf8_1.2.3
## [91] generics_0.1.3 data.table_1.14.8 prettyunits_1.1.1
## [94] graphlayouts_1.0.0 httr_1.4.6 htmlwidgets_1.6.2
## [97] scatterpie_0.2.1 whisker_0.4.1 pkgconfig_2.0.3
## [100] gtable_0.3.3 blob_1.2.4 XVector_0.40.0
## [103] shadowtext_0.1.2 htmltools_0.5.5 profvis_0.3.8
## [106] bookdown_0.34 fgsea_1.26.0 clue_0.3-64
## [109] scales_1.2.1 Biobase_2.60.0 png_0.1-8
## [112] ggfun_0.1.1 knitr_1.43 tzdb_0.4.0
## [115] reshape2_1.4.4 rjson_0.2.21 nloptr_2.0.3
## [118] nlme_3.1-162 proxy_0.4-27 cachem_1.0.8
## [121] GlobalOptions_0.1.2 parallel_4.3.1 miniUI_0.1.1.1
## [124] HDO.db_0.99.1 AnnotationDbi_1.62.2 logger_0.2.2
## [127] pillar_1.9.0 vctrs_0.6.3 urlchecker_1.0.1
## [130] promises_1.2.0.1 xtable_1.8-4 cluster_2.1.4
## [133] evaluate_0.21 magick_2.7.4 zeallot_0.1.0
## [136] cli_3.6.1 compiler_4.3.1 rngtools_1.5.2
## [139] rlang_1.1.1 crayon_1.5.2 future.apply_1.11.0
## [142] labeling_0.4.2 ps_1.7.5 plyr_1.8.8
## [145] fs_1.6.2 stringi_1.7.12 viridisLite_0.4.2
## [148] BiocParallel_1.34.2 munsell_0.5.0 Biostrings_2.68.1
## [151] lazyeval_0.2.2 devtools_2.4.5 GOSemSim_2.26.1
## [154] Matrix_1.6-0 dir.expiry_1.8.0 hms_1.1.3
## [157] patchwork_1.1.2 future_1.33.0 bit64_4.0.5
## [160] KEGGREST_1.40.0 shiny_1.7.4.1 highr_0.10
## [163] igraph_1.5.0 memoise_2.0.1 bslib_0.5.0
## [166] ggtree_3.8.0 fastmatch_1.1-3 bit_4.0.5
## [169] ape_5.7-1
Huang, Da Wei, Brad T Sherman, and Richard A Lempicki. 2009. “Bioinformatics Enrichment Tools: Paths Toward the Comprehensive Functional Analysis of Large Gene Lists.” Nucleic Acids Research 37 (1): 1–13.