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1 Overview

In this age of big data, thousands of gigabyte-size data sets are challenging scientists for

data management, even on well-equipped hardware. R is one of the most popular statistical

programming environments, but it is not typically optimized for high-performance computing

necessary for large-scale genome-wide data analyses. Here I introduce a high-performance
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C/C++ computing library “CoreArray” [1] for analyses of big-data genome-wide variants.

This allows for development of portable and scalable storage technologies, and parallel com-

puting at the multicore and cluster levels. I focus on the application of CoreArray for

statisticians working in the R environment. Three R packages gdsfmt, SNPRelate and Se-

qArray are presented to address or reduce the computational burden associated with the

genome-wide association studies.

Gdsfmt provides an R interface for CoreArray that works well generally compared to

ncdf (v1.6) and rhdf5 (v2.0). The benchmarks show uniprocessor implementations of PCA

and IBD calculation (defined below) in SNPRelate are ∼10 to 45 times faster than the im-

plementations provided in the popular EIGENSTRAT (v3.0) and PLINK (v1.07) programs,

respectively, and can be sped up to 70 ∼ 250 fold by utilizing eight cores [1].

SeqArray is designed for data management of sequencing variants, which utilizes the effi-

cient data storage technique and parallel implementation of CoreArray. The 1000 Genomes

Project released 39 million genetic variants for 1092 individuals, and a 26G data file was cre-

ated by SeqArray to store sequencing variants with phasing information, where 2 bits were

used as an atomic data type. The file size can be further reduced to 1.3G by compression

algorithms without sacrificing access efficiency, since it has a large proportion of rare vari-

ants. The uniprocessor benchmark shows that calculating allele frequencies could be done

in 5 minutes with the compressed data.

CoreArray will be of great interest to scientists involved in data analyses of large-scale

genomic data using R environment, particularly those with limited experience of low-level C

programming and parallel computing.

2 Background

Today thousands of gigabyte-size data sets are challenging scientists in the management

of big data, diverse types of data, and complex data relationships even on well-equipped hard-

ware. In information technology, “big data” usually refers to a collection of data sets so large

and complex that it becomes difficult to process them using existing database management

tools or traditional data processing applications [2].

Genome-wide association studies (GWAS) have been widely used to investigate the ge-

netic basis of many complex diseases and traits, but the large volumes of data generated from

thousands of study samples and millions of genetic variants pose significant computational

challenges. In the last ten years, chip-based genotyping technologies, such as the Illumina

2



1M BeadChip and the Affymetrix 6.0 chop, allow hundreds of thousands of common vari-

ants (SNPs) across the whole genome to be scored simultaneously. The Gene, Environment

Association Studies Consortium (GENEVA) has generated genotypic data using chip-based

genotyping techniques, with a large number of research participants (n > 80, 000) from 14

independently designed studies of various phenotypes [3]. Currently, the field of population

genetics is moving from chip data to sequencing data. Next-generation sequencing techniques

are being adopted to investigate common and rare variants, making the analyses of large-scale

genotypic data even more challenging. For example, the 1000 Genomes Project has identified

approximately 38 million single nucleotide polymorphisms (SNPs), 1.4 million short inser-

tions and deletions, and more than 14,000 larger deletions from whole-genome sequencing

technologies [4]. In the near future, new technologies, like third-generation whole-genome

sequencing [5], will be enabling data to be generated at an unprecedented scale [6]. The

computational burden associated with GWAS is especially evident with large sample and

variant sizes, and it requires efficient numerical implementation and memory management.

In this study, the development and application of non-commercial solutions to large-

scale GWAS in the big-data era are the focus, although companies such like Google, Mi-

crosoft and Amazon have long had mastery of petabyte-scale data sets. The Network

Common Data Form (netCDF) and Hierarchical Data Format (HDF) are both popular

libraries, designed to store and organize large amounts of numerical data, and they are

supported by non-profit research groups. Both libraries were originally written in C, but

they also provided interfaces to Fortran, C++ and Java. The netCDF project is hosted

by the Unidata program at the University Corporation for Atmospheric Research (http:

//www.unidata.ucar.edu/software/netcdf/), and HDF was originally developed at the

National Center for Supercomputing Applications and it is currently supported by the non-

profit HDF Group (http://www.hdfgroup.org). The latest versions of netCDF and HDF

are netCDF-4 and HDF5. Actually, netCDF-4 is based on the kernel of HDF5 and pro-

vides a simple high-level application programming interface (API) for HDF5, and it is much

more flexible than netCDF-3. The underlying kernel of netCDF-3 is totally different from

netCDF-4. For purposes of comparison, the performance of netCDF-3 is also demonstrated

in this study.

R is one of the most popular statistical programming environments, but it is not typically

optimized for high performance or parallel computing which would ease the burden of large-

scale GWAS calculations. Direct support of parallel computing in R started with release

2.14.0 (Dec, 2011) including a new package “parallel” shipped with the main program. For
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out-of-memory data, two existing R packages “ff” and “bigmemory” offer file-based access to

data sets that are too large to be loaded into memory, along with a number of higher-level

functions. However, unlike netCDF and HDF, these two packages do not provide sufficient

functions for data management, nor a universal data format to store multiple datasets in a

single file.

HDF5 is a powerful developer tool for big-data problems and it has been applied to

the fields ofAstronomy, Biological and Biomedical Science, Environmental Science and En-

gineering, etc (http://www.ncsa.illinois.edu/Projects/). It is popular in the C/C++,

Fortran and Java communities. Currently, an R package allowing limited HDF5 functions is

“rhdf5”. SNP data have a special data format, i.e., there are at most 4 cases at a biallelic

site which can be stored by 2 bits instead of one byte. There are only 4 single nucleotide

A, G, C or T, so it is possible to use less than 8 bits to store that information. In addition,

whole-genome sequencing data are not likely to be extremely polymorphic, i.e., there are

large proportions of rare variants. Hence the information on variants could be highly com-

pressed, reducing file size and increasing access efficiency of data. HDF5 supports bit-type

data via the n-bit filter, but the current version of rhdf5 (v2.0.2) does not provide those

functions.

To overcome these limitations and embrace the age of big data, in 2007 I initiated a

project named CoreArray (http://corearray.sourceforge.net/, hosted by SourceForge

that acts as a centralized location for software developers to control and manage free and open

source software development). CoreArray was designed for developing portable and scalable

storage technologies for bioinformatics data, allowing parallel computing at the multicore

and cluster levels. The CoreArray kernel was written in C/C++, but its application is

not limited to the C/C++ language. The CoreArray project provides the genomic data

structure (GDS) file format for array-oriented data: this is a universal data format to store

multiple data variables in a single file. The CoreArray library modules are demonstrated

in Figure 1 (a) and (b). A hierarchical data structure is used to store multiple extensible

data variables in the GDS format, and all datasets are stored in a single file with chunked

storage layout. Users can use the CoreArray application programming interface (API) to

conduct the functions of file management, data management and parallel computing. The

application of CoreArray includes R packages, virtualization and command-line tools.

In this study, I focus on the application of CoreArray for statisticians working in the

R environment but with limited C programming experience. Here, I provide an efficient

R interface “gdsfmt” for creating and access of array-based data. Compared to other R
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Figure 1: CoreArray library modules.
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interfaces (“ncdf” to netCDF-3 and “rhdf5” to HDF5), gdsfmt works well generally, and even

outperforms “ncdf” on the test datasets used in this study.

2.1 SNP Data in Genome-wide Association Studies

PLINK, an open-source C/C++ tool, was developed to address the computational chal-

lenges for whole-genome association and population-based linkage analyses. Since a biallelic

SNP site has at most two different alleles, constituting three possible genotypes with an ad-

ditional state to indicate missing data. This information can be packed into two bits instead

of using one byte, and PLINK reduces the file size by packing 4 SNP genotypes into one byte.

The main limitation of PLINK is memory because PLINK has to load all SNP genotypes to

memory. Therefore, the GDS format provides a big-data solution to storing SNP genotypes

for GWAS, by alowing access to data as needed without loading all data to memory.

Overall, two R packages have been presented to address some of computational challenges

in GWAS: “gdsfmt” to provide efficient, platform-independent memory and file management

for genome-wide numerical data, and “SNPRelate” to solve large-scale, numerically-intensive

GWAS calculations (i.e., PCA and IBD, see below) on multi-core symmetric multi-processing

(SMP) computer architectures [1]. Future development based on the GDS format is allowed,

and users could exploit the parallel computing functions in the gdsfmt package with the R

package “parallel” to speed up the analyses.

Principal component analysis (PCA) has been proposed to detect and correct for popula-

tion structure in genetic association studies. The eigen-analysis has been implemented in the

software package “EIGENSTRAT” but the computational burden is evident for large scale

GWAS SNP data with several thousand study individuals. Parallel computing was formally

supported by EIGENSTRAT v4.0, but it still required keeping all data in memory. The PCA

functions in the R package SNPRelate allow much larger datasets than does EIGENSTART:

the kernel of SNPRelate was written in C and has been highly optimized and it runs faster

than EIGENSTART.

Identity-by-descent (IBD) methods have also used to correct for population structure and

cryptic relatedness by estimating the degree of relatedness between each pair of study samples

[7]. Maximum-likelihood estimation (MLE) was first proposed by Thompson (1975) [?] to

estimate three IBD coefficients in a non-inbred population by a “hill climbing” technique.

An expectation–maximization (EM) algorithm was proposed by Choi et al. (2009) [7] to

estimate IBD coefficients but this is very time-consuming and not suitable for large-scale

data. An alternative is the method of moments (MoM) approach provided by PLINK based
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on identity-by-state. Compared to MLE, MoM has a great advantage in computational

efficiency. The R packages “CrypticIBDcheck” and “ibdreg”, and many other binary software

written in other languages, involved with IBD coefficients, have a limitation in data scale.

By contrast, gdsfmt and SNPRelate provide an efficient data storage technique and a parallel

implementation to address and reduce the burden of IBD calculation. Since big-data analyses

are the focus of this study, requiring computationally efficient methods, the performance of

different implementations of MoM, rather than MLE, are compared here.

2.2 Sequencing Variants

The Variant Call Format (VCF) was developed for the 1000 Genomes Project. It is a

generic text format for storing DNA polymorphism data such as SNPs, insertions, deletions

and structural variants, together with rich annotations (http://vcftools.sourceforge.

net) [8]. It is most likely stored in a compressed manner with indices for fast data re-

trieval of variants. A less-flexible binary format (Binary Call Format, BCF) is designed

for efficient storing and parsing of VCF records. PLINK/SEQ, a toolset for working with

sequencing data, is designed to be complementary to the existing PLINK package (http:

//atgu.mgh.harvard.edu/plinkseq/). PLINK/SEQ was written in C/C++, but it also

provides an R interface “Rplinkseq” with limited functions. An R/Bioconductor package

“VariantAnnotation” was designed for annotating and filtering genetic variants using VCF

files, but is not used for data analysis.

Most of the existing software and packages for the analyses of sequencing data are not

designed for R users, and it is thought that the implementation of the R language is slow

and not likely to be suitable for big-data analyses. To address this limitation I developed an

R package “SeqArray” that utilizes the efficient data storage technique and parallel imple-

mentation of CoreArray. SeqArray provides an alternative data storage to VCF for exploitig

genetic variant data, and the kernel of SeqArray is written in C/C++ to speed up the in-

tensive computation for large-scale sequencing data. The primary functions in SeqArray

are related to data management, offering efficient access of genetic variants using the R

language. It is a possible solution to make up the gap in data analyses between R users

and high-throughput sequencing data. R users can use their own packages to extend the

functions and computational efficiency of SeqArray.
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Table 1: Data types supported by the CoreArray library.

signed integer
8-bit integer, 16-bit integer, 24-bit integer, 32-bit integer, 64-bit integer
signed integer with 2 bits, signed integer with 3 bits, ..., signed integer
with 15 bits

unsigned integer
8-bit integer, 16-bit integer, 24-bit integer, 32-bit integer, 64-bit integer
unsigned integer with 1 bit, unsigned integer with 2 bits, ..., unsigned
integer with 15 bits

floating-point number
single-precision number (32 bits), double-precision number (64 bits)

character
UTF-8 string, UTF-16 string, UTF-32 string

3 Features

The following features are described in this section: CoreArray modules, the GDS struc-

ture for SNP data, and the GDS structure for sequencing data.

3.1 Features of CoreArray

CoreArray is the project name that includes the C/C++ kernel library and external

applications. Multiple data variables can be stored in a single file with the universal data

format for genomic data structure (GDS). As shown in Table 1, the data types are not

limited to array-oriented data, and CoreArray also supports storing any file, such as a text

file describing project information. Data variables are organized in a hierarchical structure

allowing folders to contain different variables. The variable dimension can be extended from

any direction. The CoreArray library supports a single file with size of at most 128 terabytes

(247 bytes).

The algorithm modules are shown in Figure 1a, and the detailed documents for C/C++

source codes are provided at: http://corearray.sourceforge.net/lib/html/index.html.

Instead of going through the programming details, I provide a higher-level description of

CoreArray’s functionality here, and an overview of the inheritance diagram for CoreArray ob-

ject classes on the webpage (http://corearray.sourceforge.net/lib/html/class_core_

array_1_1_cd_object.html). For data management, an optional data compression / de-

compression function can be plugged in. The standard deflate and inflate algorithm, zlib

8

http://corearray.sourceforge.net/lib/html/index.html
http://corearray.sourceforge.net/lib/html/class_core_array_1_1_cd_object.html
http://corearray.sourceforge.net/lib/html/class_core_array_1_1_cd_object.html


(http://www.zlib.net), is used currently by the CoreArray kernel. A chunked storage lay-

out is adopted in the low-level storage management for extensible datasets, and a contiguous

data space may be divided into two or more chunks stored in the actual file without neces-

sarily being adjacent. For example, the user adds 1000 integers to a data variable when a

GDS file is created, and then he would like to append another 1000 integers to the variable.

However, if the original chunk has no enough space for the new integers, then GDS format

will automatically create a new chunk to store the additional data. For file management,

CoreArray allows different access I/O layers, such as standard file I/O, MPI I/O (Message

Passing Interface, MPI, for parallel computing by multiple processes), etc.

In Unix-like systems, the standard pthreads library is adopted for parallel computing,

whereas Windows systems do not provide pthreads by default, instead WinAPIs are called

to substitute the functions in pthreads. CoreArray offers a universal platform-independent

interface of multi-thread functions. The binary program “EditGDS” was designed for vir-

tualization of GDS format. Users can use EditGDS to open a GDS file immediately, and

its tree-like structure is automatically displayed in the left panel. Browsing and modify-

ing datasets manually are allowed in EditGDS. EditGDS was written in Free Pascal lan-

guage (http://www.freepascal.org) using Lazarus (a free development environment). Its

source code can be downloaded from http://sourceforge.net/projects/corearray/. A

command-line tool “edgds” is shipped with the main C/C++ source codes, allowing multiple

operations on a GDS file, such as extracting a subset of the data variables.

3.2 Features of SNPRelate for SNP Data

3.2.1 Data Structure for SNPRelate

To support efficient memory management for genome-wide numerical data, the gdsfmt

package provides the genomic data structure (GDS) file format for array-oriented bioinfor-

matic data. This is a container for storing annotation data and SNP genotypes. In this

format each byte encodes up to four SNP genotypes, thereby reducing file size and access

time. The GDS format supports data blocking so that only the subset of data that is being

processed needs to reside in memory. GDS formatted data is also designed for efficient ran-

dom access to large data sets. Although SNPRelate functions operate only on GDS-format

data files, functions to reformat data from PLINK [9], sequencing Variant Call Format (VCF)

[8], netCDF [10] and other data files, are provided by my packages.
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> # load the R packages: gdsfmt and SNPRelate

> library(gdsfmt)

> library(SNPRelate)

Here is a typical GDS file:

> snpgdsSummary(snpgdsExampleFileName())

The total number of samples: 279

The total number of SNPs: 9088

SNP genotypes are stored in individual-major mode.

snpgdsExampleFileName() returns the file name of a GDS file used as an example in

SNPRelate, and it is a subset of data from the HapMap project and the samples were geno-

typed by the Center for Inherited Disease Research (CIDR) at Johns Hopkins University

and the Broad Institute of MIT and Harvard University (Broad). snpgdsSummary() sum-

marizes the genotypes stored in the GDS file. “Individual-major mode” indicates listing all

SNPs for an individual before listing the SNPs for the next individual, etc. Conversely,

“SNP-major mode” indicates listing all individuals for the first SNP before listing all indi-

viduals for the second SNP, etc. Sometimes “SNP-major mode” is more computationally

efficient than “individual-major model”. For example, the calculation of the genetic covari-

ance matrix deals with genotypic data SNP by SNP, and then “SNP-major mode” should be

more efficient.

> # open a GDS file

> (genofile <- openfn.gds(snpgdsExampleFileName()))

File: Users/ZhengX/extdata/hapmap_geno.gds

+ [ ]

|--+ sample.id { FStr8 279 ZIP(23.10%) }

|--+ snp.id { Int32 9088 ZIP(34.76%) }

|--+ snp.rs.id { FStr8 9088 ZIP(42.66%) }

|--+ snp.position { Int32 9088 ZIP(51.77%) }

|--+ snp.chromosome { Int32 9088 ZIP(0.33%) }

|--+ snp.allele { FStr8 9088 ZIP(14.45%) }

|--+ genotype { Bit2 9088x279 } *

|--+ sample.annot [ ] *
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| |--+ sample.id { FStr8 279 ZIP(23.10%) }

| |--+ family.id { FStr8 279 ZIP(28.37%) }

| |--+ geneva.id { Int32 279 ZIP(80.29%) }

| |--+ father.id { FStr8 279 ZIP(12.98%) }

| |--+ mother.id { FStr8 279 ZIP(12.86%) }

| |--+ plate.id { FStr8 279 ZIP(1.29%) }

| |--+ sex { FStr8 279 ZIP(28.32%) }

| |--+ pop.group { FStr8 279 ZIP(7.89%) }

The output lists all variables stored in the GDS file. At the first level, it stores variables

sample.id, snp.id, etc. The additional information are displayed in the square brackets

indicating data type, size, compressed or not + compression ratio. The second-level variables

sex and pop.group are both stored in the folder of sample.annot. All of the functions in

SNPRelate require a minimum set of variables in the SNP annotation data. The minimum

required variables are

• sample.id, a unique identifier for each sample.

• snp.id, a unique identifier for each SNP.

• snp.position, the base position of each SNP on the chromosome, and 0 for unknown

position; it does not allow NA.

• snp.chromosome, an integer mapping for each chromosome, with values 1-26, mapped

in order from 1-22, 23=X,24=XY (the pseudoautosomal region), 25=Y, 26=M (the mi-

tochondrial probes), and 0 for probes with unknown positions; it does not allow NA.

• genotype, a SNP genotypic matrix. SNP-major mode: nsample×nsnp, individual-major

mode: nsnp × nsample.

> # Take out snp.id

> head(read.gdsn(index.gdsn(genofile, "snp.id")))

[1] 1 2 3 4 5 6

> # Take out snp.rs.id

> head(read.gdsn(index.gdsn(genofile, "snp.rs.id")))

[1] "rs1695824" "rs13328662" "rs4654497" "rs10915489" "rs12132314"

[6] "rs12042555"
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There are two additional variables:

• snp.rs.id, a character string for reference SNP ID that may not be unique.

• snp.allele, it is not necessary for the analysis, but it is necessary when merging geno-

types from different platforms. The format of snp.allele is “A allele/B allele”, like

“T/G” where T is A allele and G is B allele.

There are four possible values stored in the variable genotype: 0, 1, 2 and 3. For bi-

allelic SNP sites, “0” indicates two B alleles, “1” indicates one A allele and one B allele, “2”

indicates two A alleles, and “3” is a missing genotype. For multi-allelic sites, it is a count

of the reference allele (3 meaning no call). “Bit2” indicates that each byte encodes up to

four SNP genotypes since one byte consists of eight bits. “FStr8” indicates a character-type

variable.

> # Take out genotype data for the first 3 samples and the first 5 SNPs

> (g <- read.gdsn(index.gdsn(genofile, "genotype"), start=c(1,1), count=c(5,3)))

[,1] [,2] [,3]

[1,] 2 1 2

[2,] 1 1 1

[3,] 0 0 1

[4,] 1 1 2

[5,] 2 2 2

> # read population information

> pop <- read.gdsn(index.gdsn(genofile, c("sample.annot", "pop.group")))

> table(pop)

pop

CEU HCB JPT YRI

92 47 47 93

> # close the GDS file

> closefn.gds(genofile)

3.2.2 Functions of SNPRelate

SNPRelate provides computationally efficient functions for PCA and IBD relatedness

analysis on GDS genotype files. The calculations of the genetic covariance matrix and pair-
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Figure 2: Flowchart of parallel computing for principal component analysis and identity-by-
descent analysis.

wise IBD coefficients are split into non-overlapping parts and assigned to multiple cores

for performance acceleration, as shown in Figure 2. The functions in SNPRelate for PCA

include the basic calculations of sample and SNP eigenvectors, as well as useful accessory

functions. The correlation between sample eigenvectors and observed allelic dosage can be

used to evaluate the genome-wide distribution of SNP effects on each eigenvector. The SNP

eigenvectors can be used to project a new set of samples to the existing axises, which is

useful in studies with substantial relatedness [11].

For relatedness analysis, IBD estimation in SNPRelate can be done by either the method

of moments (MoM) [9] or maximum likelihood estimation (MLE) [7, ?] through identity by

state (IBS). Our experience shows that MLE is significantly more computationally intensive

than MoM for large-scale data analysis, although MLE estimates are usually more reliable

than MoM. Additionally, the functions for linkage disequilibrium (LD) pruning generate

a pruned subset of SNPs that are in approximate linkage equilibrium with each other, to

avoid the strong influence of SNP clusters in PCA and IBD analysis. An actual kinship

matrix of individuals can be estimated by either method, which could be used in downstream

association analyses [12].

Both R packages are written in C/C++, use the POSIX threads library for shared mem-

ory parallel computing on Unix-like systems, and have an R interface in which the kernel

has been highly optimized by blocking the computations to exploit the high-speed cache

memory. The algorithms are optimized to load genotypes block by block with no limit to

the number of SNPs. The algorithms are limited only by the size of the main memory, which

is accessed by the parallel threads, and holds either the genetic covariance matrix or IBD

coefficient matrix.
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GDS is also used by an R/Bioconductor package GWASTools as one of its data storage

formats [13]. GWASTools provides many functions for quality control and analysis of GWAS,

including statistics by SNP or scan, batch quality, chromosome anomalies, association tests,

etc.

3.3 Features of SeqArray for Sequencing Data

A GDS format for storing DNA polymorphism data such as SNPs, insertions, deletions

and structural variants, together with rich annotations, including haplotypic phase states,

was provided by the R package“SeqArray”. A typical GDS for sequencing data with minimal

variables is as follows:

+

|--+ description [ ] <-- indicates sequencing format

|--+ sample.id { VStr8, n } <-- unique IDs

|--+ variant.id { Int32, m } <-- unique IDs

|--+ position { Int32, m } <-- position of the start of the variant

|--+ chromosome { VStr8, m } <-- chromosome code

|--+ allele { VStr8, m } <-- reference and alternative alleles

|--+ genotype

| |--+ length { Int32, m } <-- # of bits needed for each variant over 2

| |--+ data { Bit2, (2, n, m1) } <-- stores multiple genetic variants

| |--+ ~data { Bit2, (2, m1, n) } <-- the transposed "data", optional

|--+ phase

| |--+ data { Bit1, (n, m) } <-- 1/0, whether phased or unphased

| |--+ ~data { Bit1, (m, n) } <-- the transposed "data", optional

where n is the number of samples, m is the total number of variants for DNA polymor-

phism, (2, n, m1) is a 3-dimensional array, and (n, m) is a matrix, where m1 ≥ m. “VStr8”

represents variable-length string, whereas “Int32” for 32-bit integer, “Bit2” for 2-bit integer

and “Bit1” for 1-bit integer (0/1). The variables sample.id, variant.id, position, chro-

mosome and allele are not necessarily of data type shown here (VStr8, character; Int32,

32-bit integer). The chromosome code supports “X”, “XY”, etc, or “Z” for other species. The

variable data stores multiple genotypic variants in a single 3-dimensional dataset. The size

of the first dimension is two, since human genomes consist of pairs of chromosomes. For

other polyploid species, the size of the first dimension could be greater than two to reflect
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actual number of copies of chromosomes. The type of genotype/data is “Bit2” allowing

at most four possible values, and it is sufficient to represent most of genetic variants since

SNPs are the most common polymorphism (two alleles plus a missing flag, three possible

values in total). If a site has more than three possible polymorphisms (like multiple alle-

les, insertion or deletion), contiguous space will be automatically used to store additional

polymorphic information. For example, a site with seven polymorphisms, an allele with

eight possible values (seven alleles plus a missing flag) cannot be stored in two bits, then

SeqArray will utilize contiguous two bits in the next sub data space to represent this value,

i.e., a total of four bits can represent at most 16 classes. Therefore, the third dimension

of genotype/data m1 could be greater than m. The variable genotype/length provides

information for how many bits needed for each variant. Finally, phase indicates the phas-

ing states have been determined or not by sequencing methods. The chip-based genotyping

techniques cannot determine phases or haplotypes, the next-generation sequencing partially

offers phasing information but that information is limited in a small DNA fragment. The

prefix ∼ indicates that it is a transposed version of corresponding variable, which helps for

optimizing the access efficiency.

Here I describe only the key features of SeqArray. Additional annotation information,

such as quality score, are also able to be stored in the GDS file. Any future extension of

SeqArray will depend on real problems, and some coding optimization needs to be made

by C programming. Comprehensive R analyses using SeqArray will be provided by other

packages from my future research.

4 Performances

A benchmark scheme was adopted to make a comparison among three R packages“gdsfmt”,

“ncdf” and “rhdf5”. The array 32-bit integer variables used in the performance comparison

are shown in Table 2 with dimensions ranging from one to six, which has been used by the

HDF Group for a netCDF-4 performance report 1. The small sets are approximately 1MB,

while the sizes of large tests range from 30MB to 40MB. Each benchmark run measured the

time to read or write a single variable, and the execution sequence was:

1 “NetCDF-4 Performance Report – The HDF Group” at http://www.hdfgroup.org/pubs/papers/

2008-06_netcdf4_perf_report.pdf
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Table 2: Array variables of 32-bit integer for performance comparisons in R.

Variable Number of Dimension
Name Dimensions Small Tests Large Tests

Variable 1 1 [262144] [10000000]
Variable 2 2 [512][512] [3162][3162]
Variable 3 3 [64][64][64] [215][215][215]
Variable 4 4 [22][22][22][22] [56][56][56][56]
Variable 5 5 [12][12][12][12][12] [25][25][25][25][25]
Variable 6 6 [8][8][8][8][8][8] [14][14][14][14][14][14]

Data Size ∼ 1MB ∼ 30 to 40 MB

Repeat 100 times:
Test 1: Open File1; write Variable 1; close File1

[ call “drop caches” if cache is disabled ]
Test 2: Open File1; read Variable 1; close File1

[ call “drop caches” if cache is disabled ]
Test 3: Open File2; write Variable 2; close File2

[ call “drop caches” if cache is disabled ]
Test 4: Open File2; read Variable 2; close File2

[ call “drop caches” if cache is disabled ]
...
Test 11: Open File6; write Variable 6; close File6

[ call “drop caches” if cache is disabled ]
Test 12: Open File6; read Variable 6; close File6

[ call “drop caches” if cache is disabled ]

The entire benchmark consists of 100 runs, and the read and write speeds are estimated

by averaging 100 speeds of each single run. The benchmark uses the command system.time

in R to bracket the read and write functions. The read and write speeds are reported in

Figure 3, calculated by the size of dataset in megabytes over the elapsed wall clock time for

the corresponding calls. The latest versions of R packages, gdsfmt (v0.9.10), ncdf (v1.6) and

rhdf5 (v2.0.2), were used in the tests. The benchmarks were run on a Linux system with two

quad-core Intel processors (2.27GHz) and 32 GB RAM. The system kernel caches programs

and data in memory as long as possible, so sometimes read and write rates actually reflect

the time to access memory rather than disk. In practice the system caching is almost always

enabled, but the file size may be out of the range of cache memory. Therefore, the rates with

and without memory cache are both investigated in this study.

Figure 3 shows that gdsfmt outperforms the other packages on reading and writing data
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Figure 3: The benchmarks for reading and writing data using gdsfmt, ncdf and rhdf5 when
the system cache is enabled. Gdsfmt outperforms the other two packages.

for every single run when the system cache is enabled. On average, the read rate of gdsfmt

is about 3 times of those of ncdf and rhdf5, and the write rate is ∼ 1.6 times compared to

ncdf, and ∼ 14 times faster than rhdf5. Reading and writing on small datasets are slower

than the same operations on large datasets. The read rates of gdsfmt tend to decline as the

number of dimensions, whereas the read rates of ncdf and rhdf5 and write rates do not have

such trend. When the system cache is cleared (Figure 4), the read speed is about twice of

the write rate on large datasets for gdsfmt and ncdf packages. Note that, on average, the

read rate using system cache is about 5 times of that without system cache. Overall, gdsfmt

performs well compared to ncdf and rhdf5.

4.1 Comparison with PLINK and EIGENSTRAT

We illustrate the performance of SNPRelate using small, medium and large test data

sets. The small and medium sets were constructed from simulated data and contain 500 and

5,000 samples with 100K SNP markers, respectively. The large set consists of 55,324 subjects
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Figure 4: The benchmarks for reading and writing data using gdsfmt, ncdf and rhdf5 when
the system cache is cleared. Gdsfmt is more efficient than the other two packages on writing
data, whereas rhdf5 is the most efficient on reading data.

selected from 16 projects of the“Gene-Environment Association Studies” (GENEVA) consor-

tium [3]. We compared the run times of SNPRelate with EIGENSTRAT (v3.0) and PLINK

(v1.07) for PCA and IBD estimation respectively. The implementations were benchmarked

on a system with two quad-core Intel processors running at 2.27GHz and 32 GB RAM and

running Linux Fedora 10.

As shown in Table 3, the uniprocessor implementations of PCA and IBD in SNPRelate are

approximately eight to 50 times faster than the implementations provided in EIGENSTRAT

and PLINK respectively. When the SNPRelate algorithms were run using eight cores, the

performance improvement ranged from ∼30 to ∼300. The SNPRelate PCA was conducted

on the large data set (n = 55, 324 subjects with ∼310K selected SNP markers). It took

∼64 hours to compute the genetic covariance matrix (55K-by-55K) when eight cores were

used, and ∼9 days to calculate eigenvalues and eigenvectors using the uniprocessor version

of the linear algebra package (LAPACK) in R. The analyses on the small- and medium- size

data sets required less than 1GB of memory, and PCA on ∼55K subjects required ∼32GB
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Table 3: Comparison of run-times (seconds and minutes) for SNPRelate, EIGENSTRAT
and PLINK on a Linux system with two quad-core Intel processors (2.27GHz) and 32 GB
RAM.

Method / Small Set1 Medium Set1

# of cores 1 4 8 1 4 8

Principal Component Analysis (PCA)

SNPRelate

{
11s+ 5s+ 3s+ 20m+ 8m+ 5m+
1s2 1s2 1s2 12m2 12m2 12m2

EIGENSTRAT 90s3 — — 710m3 — —

Method of Moment for Identity-by-Descent Analysis (MoM)
SNPRelate 19s 6s 4s 30m 8m 5m
PLINK 980s — — 1630m — —

1: simulated 500 (small set) and 5000 (medium set) samples with 500K SNPs;
2: calls the uniprocessor version of LAPACK in R to compute the eigenvalues and eigenvectors, taking 1s
and 12m for the small and medium set respectively;
3: includes the computation time of calculating the eigenvalues and eigenvectors.

since the genetic covariance matrix is stored in the main memory shared by threads. An

improvement on running time for PCA is to employ a multi-threaded version of BLAS to

perform the calculation of eigenvalues and eigenvectors instead of the default uniprocessor

one. Although SNPRelate is much faster than EIGENSTRAT for PCA or PLINK for IBD

estimation using MoM, the results are numerically the same (i.e. identical accuracy).

4.2 Performance for Sequencing Variant Data

Currently, the primary application of CoreArray is in the field of bioinformatics. There

are only four single nucleotide A, G, C or T, and at most three possible SNP genotypes at a

biallelic locus, therefore we can use less than eight bits to represent SNP or sequencing data.

In this section, I compare the performance of three different storage schemes to represent

genotypic data from the 1000 Genomes Project [4] using GDS format: 1) one byte represents

one allele; 2) four SNP alleles are packed in one byte; 3) four SNP alleles are packed in one

byte + data compression. Phasing information have be incorporated in the GDS files, since

two alleles at a site are stored separately.

The test datasets consist of 39,706,715 variants and 1,092 study samples. The orig-

inal VCF data files for the 1000 Genomes Project were downloaded from http://ftp.

1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/integrated_call_sets/.

The function “seqVCF2GDS” in the R package SeqArray was used to convert and merge all
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VCF files, and all ∼39M variants are extracted from the VCF files. I prepared six GDS

files ahead which store genotypic data using the above schemes: one byte, two bits and

two bits plus compression for sample-by-variant and variant-by-sample storages respectively.

“Sample-by-variant” indicates listing all individuals for the first variant before listing all in-

dividuals for the second variant etc, whereas “variant-by-sample” indicates listing all variants

first.

A benchmark scheme was adopted to evaluate the performance of CoreArray API by R

programming, stratified by scan orders: SNP by SNP, or sample by sample. Since genotypes

were stored in the GDS files SNP by SNP, the higher speeds of scanning SNP by SNP

should be expected. The function “apply.gdsn” in the R package gdsfmt was used to perform

scanning, which allows two ways by SNP or by sample. The function “clusterApply.gdsn”

was called in the parallel tests for the multi-core system. The functions “apply.gdsn” and

“clusterApply.gdsn”are actually coded in low-level C. Scanning means that passing genotypes

to a special function but that function did nothing. Each test was replicated 5 times, and the

average running time was reported. The benchmarks were run on a Linux system with two

quad-core Intel processors (2.27GHz) and 32 GB RAM, and gdsfmt v0.9.12 and SeqArray

v0.9.0 were used in the tests.

As shown in Table 4, the compression ratio for the sample-by-variant storage scheme is

5.6%, reflecting the fact that whole human genomes are unlikely to be very polymorphic,

since the dataset consists of large proportions of variants. According to the variant-by-sample

scheme, the compression ratio is 19.2%, which indicates it is less efficient to compress genetic

data for a single individual.

The read rates are presented as the running times for scanning the whole dataset variant

by variant, or sample by sample. When the reading order agrees with the storage order (i.e.,

reading by variant according to storing by variant), it is significantly efficient than the case of

disagreement. E.g., it only took 4.2 minutes to read the whole data variant by variant, when

genotypic data are stored by variant. The storage scheme of “two bits” is the optimal way to

store genotypic data. For scanning by variant, the read speed for“two bits”with and without

compression are much faster than “one byte” (∼ four times). It can be explained as the size

of two-bit GDS file (∼ 26G and 1.3G) can be cached in system memory (32G), but the GDS

file for “one byte” (∼ 86G) had exceeded the memory limit. CoreArray kernel has to refresh

file caches by loading more data from the hard disk (please compare the performance of

gdsfmt with and without caches in Figure 3 and 4). The read bottleneck also influenced the

performance of parallel computing, and the ratio for “one byte” (20.4m/12.3m) is far away
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Table 4: The computing times of CoreArray when reading genotypic GDS files, which consist
of 39,706,715 variants and 1,092 study individuals from the 1000 Genomes Project 1.

Storage Scheme
Running time one byte 2 bits 2 bits + data
(minute / hour) (∼ 86G) (∼ 26G) compression1

Store variant by variant: ∼ 1.3G (5.2%)

read by variant
1 core 20.4m 5.4m 4.2m
4 cores 12.3m 1.4m 1.1m

read by sample2
1 core 47.8h 56.7m 234.2m
4 cores 39.6h 14.4m 58.6m

Store sample by sample: ∼ 4.8G (19.2%)

read by variant2
1 core 98.9m 44.4m 72.8m
4 cores 36.8m 13.8m 18.9m

read by sample
1 core 28.8m 6.8m 12.6m
4 cores 16.6m 1.7m 3.2m

1: standard “zlib” was used with default settings, compression ratios are 5.2% and 19.2%.
2: using the default buffer size 1G. Use of large buffer size can reduce the times of scanning whole dataset,
but it should not be out of memory limit.

from the factor four, compared to the ratios for “two bits” (5.4m/1.4m) and “two bits plus

compression” (4.2m/1.1m). When reading data sample by sample according to the sample-

by-variant storage scheme, CoreArray kernel automatically adopts a buffer strategy since

the variants of a specified sample are not stored contiguously. The corresponding running

times are significantly slower than the times of reading by variant in the same column. It is

interesting to see how the memory factor influence the running times: I reran all tests on a

workstation with 96G memory, the most extreme reading time reduced from 47.8h to 1.2h.

System memory cache does have significant effects on the access efficiency.

When the genotypic data are stored sample by sample, reading by sample is more efficient

than reading by variant, e.g., 6.8m vs 44.4m, and 12.6m vs 72.8m. Its compression ratio

(19.2%) is higher than that (5.2%) compared to the sample-by-variant storage scheme. Larger

file size (4.8G vs 1.3G) indicates more running times (12.6m vs. 4.2m). If the file size is

of greater interest, the storage scheme “two bits plus compression” plus “sample-by-variant”

appears to be appropriate for normal-equipped hardware, especially for laptops with at most

8G memory. In the case of laptop, ∼ 26G of genotypic data are not able to be cached in

memory, then scanning such dataset will require more file read operation interacting with

hard disk and will be slowed down. The results in Table 4 also indicate that the functions

reading the“sample-by-variant”dataset sample by sample require an optimized programming
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skill. For example, a typical function reading by sample is to calculate the missing rate per

sample. This function can be revised as a function of reading by variant, then it could be

sped up without a parallel scheme. The applications include calculating allele frequencies,

and the uniprocessor benchmark shows that calculating allele frequencies could be done in

5 minutes with the compressed data.

5 Conclusion

In this study, I introduced a high-performance computing library CoreArray for big-data

analyses of genome-wide variants. The CoreArray project was initiated in 2007 with an aim

to develop portable and scalable storage technologies for bioinformatics data allowing parallel

computing at the multicore and cluster levels. I focus on the application of CoreArray for

statisticians working in the R environment but with limited C programming experience.

Three R packages gdsfmt, SNPRelate and SeqArray are presented to address or reduce the

computational burden associated with the genome-wide association studies.

Gdsfmt provides a general R interface of CoreArray API, and it works well generally,

and it even outperforms ncdf and rhdf5 on the most of the test datasets in this study. The

benchmarks show the uniprocessor implementations of PCA and IBD in SNPRelate are ∼10

to 45 times faster than the implementations provided in the popular EIGENSTRAT (v3.0)

and PLINK (v1.07) programs respectively, and can be sped up to 70 ∼ 250 fold by utilizing

eight cores. SeqArray offers a possible solution to make up the gap in data analyses between

R users and high-throughput sequencing data utilizing parallel computing.

CoreArray will be of great interest to scientists involved in data analyses of large-scale

genomic data using R environment, particularly those with limited experience of low-level C

programming and parallel computing.

6 Resources

1. CoreArray project: http://corearray.sourceforge.net/

2. gdsfmt R package: http://cran.r-project.org/web/packages/gdsfmt/index.html

3. SNPRelate R package: http://cran.r-project.org/web/packages/SNPRelate/index.

html

4. SeqArray, an R/Bioconductor package.
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