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Abstract. Genotype-level cancer progression models describe the ordering
of accumulating mutations, e.g., somatic mutations / copy number varia-
tions, during cancer development. These graphical models help understand
the “causal structure” involving events promoting cancer progression, possibly
predicting complex patterns characterising genomic progression of a cancer.
Reconstructed models can be used to better characterise genotype-phenotype
relation, and suggest novel targets for therapy design.
tronco (translational oncology) is a r package aimed at collecting state-of-
the-art algorithms to infer progression models from cross-sectional data, i.e.,
data collected from independent patients which does not necessarily incorpo-
rate any evident temporal information. These algorithms require a binary
input matrix where: (i) each row represents a patient genome, (ii) each col-
umn an event relevant to the progression (a priori selected) and a 0/1 value
models the absence/presence of a certain mutation in a certain patient.
The current first version of tronco implements the caprese algorithm
(cancer progression extraction with single edges) to infer possible progression
models arranged as trees; cfr.

• Inferring tree causal models of cancer progression with probability raising,
L. Olde Loohuis, G. Caravagna, A. Graudenzi, D. Ramazzotti, G. Mauri,
M. Antoniotti and B. Mishra. PLoS One, to appear.

This vignette shows how to use tronco to infer a tree model of ovarian cancer
progression from CGH data of copy number alterations (classified as gains or
losses over chromosome’s arms). The dataset used is available in the SKY/M-
FISH database. The reference manual for tronco is available in the package.

The tronco workflow.

Requirements: You must have rgraphviz installed to use the package, see Bioconductor.org.
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1. Types/Events definition

First, load tronco in your r console.

> library(TRONCO)

Every node in the plotted topology can be colored according to the color table defined in r. You can use
the command colors to see the available colors, e.g., "red", "blue" or RGB "#FF9900FF".

You can start defining the event types that you are considering, and assign them a color.
As an example, for CGH data we define two types of events, gain and loss, which we color red and

green to represent amplifications or deletion of a chromosome arm. For instance, we can do this as
follows:

> types.add("gain", "cornflowerblue")

Set color value "cornflowerblue" for events of type "gain"

> types.add("loss", "brown1")

Set color value "brown1" for events of type "loss"

If many types have to be defined it might be convenient to load all of them at once. This is possible by
using a tabular input file (in csv format):

type_name, type_color e.g., red, gain

and issuing the command types.load("types.txt") – if types are defined in file types.txt. The
output produced by tronco might show warnings due to, e.g., different types assigned the same color.

Once types are defined, you can define the set of events in the dataset (which will constitute the
progression), give them a label, a type and bind them to a dataset column. Since in general there are
much more events than types, it might be convenient to prepare an external file to load via command
events.load("events.txt"). The format expected for events is similar to the one expected for types,
namely as a tabular input file in csv format:

event_name, event_type, column_number e.g., 8p+, gain, 1 .

For the ovarian CGH dataset, such a file contains the following rows (we show the first 3 lines)

8p+, gain, 1

3p+, gain, 2

5q-, loss, 3

......

which define, as events, gains in arm p of chromosomes 8 and 3, losses on arm q of chromosomes 5, etc.
Given the file events.txt where are defined the events with the above notation, the events can be loaded
from a file as follows.

> events.load("events.txt")

Added event "8q+" of type "gain" (color: "cornflowerblue"), dataset column "1"

Added event "3q+" of type "gain" (color: "cornflowerblue"), dataset column "2"

Added event "5q-" of type "loss" (color: "brown1"), dataset column "3"

Added event "4q-" of type "loss" (color: "brown1"), dataset column "4"

Added event "8p-" of type "loss" (color: "brown1"), dataset column "5"

Added event "1q+" of type "gain" (color: "cornflowerblue"), dataset column "6"

Added event "Xp-" of type "loss" (color: "brown1"), dataset column "7"

Events will constitute the nodes in the progression model. If one is willing to add events in a itera-
tive fashion the command events.add(event_name, event_type, column_number) can be used. For
instance events.add("8q+", "gain", 1).

At this point, tronco executes some consistency checks to ensure that all the added events are of a
declared type, and report the user potential inconsistencies.
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2. Data loading & Progression inference

Once events are set, you can load the input dataset, which must be stored in a text file as a binary
matrix (once loaded, you can use tronco.data.view(your_data) to visualise loaded data as a heatmap).

> data(ov.cgh)

> data.load(ov.cgh)

Data frame validated and data.values variable is loaded in global environment

> str(data.values)

'data.frame': 87 obs. of 7 variables:

$ 8q+:gain: int 0 0 1 1 0 1 1 0 0 1 ...

$ 3q+:gain: int 0 0 1 0 0 1 1 1 1 0 ...

$ 5q-:loss: int 0 0 1 0 0 1 1 1 0 1 ...

$ 4q-:loss: int 0 1 1 0 0 1 1 0 0 1 ...

$ 8p-:loss: int 0 0 0 0 0 1 1 0 0 1 ...

$ 1q+:gain: int 1 1 0 0 0 0 0 0 0 1 ...

$ Xp-:loss: int 0 0 0 0 0 0 1 0 1 1 ...

In this case 87 samples are available and 7 events are considered (in general, the inference problem is
well posed if there are more samples than events, which is the case here for ovarian).

Further consistency checks are performed by tronco at data-loading time; these include checking
that:

• All the columns of the dataset are assigned a unique event;

• There are no identical columns in the dataset. If this is the case, the columns get merged and the
events associated get merged too (a default type is assigned in this case);

• There are no columns in the dataset solely constituted by 0s or 1s. If this is the case, the columns
and the events associated are deleted.

tronco signals the user that the data presents some inconsistency, if that is the case. Once the input
is loaded, caprese can be executed.

> topology <- tronco.caprese(data.values, lambda=0.5)

Executed CAPRESE algorithm with shrinkage coefficient: 0.5

Estimated false positives error rate: 0.1949365

Estimated false negative error rate: 0.1168414

In the above example, caprese is executed with a shrinkage coefficient set to 0.5 (the default value, if
not specified), which is the optimal value for data containing false positives and false negatives. If these
were absent, the optimal coefficient should be set to an arbitrary small value, e.g. 10−3; in any case the
coefficient must be in [0, 1]. Notice that tronco provides an empirical estimation of the the rate of false
positives and negatives in the data, given the reconstructed model; this is done via `2 distance.

The returned topology can be printed to screen by using the topology object print method, or can
be visualized by using the tronco.plot function.

> topology

Tree progression model with 7 events

8q+:gain -> 3q+:gain

8q+:gain -> 8p-:loss

5q-:loss -> 4q-:loss

8p-:loss -> Xp-:loss

Estimated false positives error rate: 0.1949365

Estimated false negative error rate: 0.1168414
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Ovarian cancer progression with CAPRESE

8q+
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Figure 1: Ovarian cancer CGH tree reconstructed with CAPRESE. We show the result of
reconstruction with caprese. These trees are plot as explained in §2 and 3. The tree is the reconstructed
model without confidence information.

> tronco.plot(topology, title="Ovarian cancer progression with CAPRESE", legend.title="CGH events",

+ legend.coeff = 1.0, label.coeff = 1.2, legend = TRUE)

Plot created successfully

In this case we are assigning a title to the plot, we are requiring to display a legend ( legend = TRUE),
and we are setting custom size for the text in the legend (legend.coeff = 0.7, 70% of the default size)
and in the model ( label.coeff = 1.2); see Figure 1.

3. Confidence estimation

Data and model probabilities. Before estimating the confidence of a reconstruction, one might
print and visualise the frequency of occurrence for each event, the joint distribution and the conditional
distribution according to the input data (i.e., the observed probabilities). Notice that for the conditional
distribution we condition only on the parent of a node, as reconstructed in the returned model. Plots of
these distributions are shown in Figure 2, and are evaluated as follows.

> confidence.data.single(topology)

8q+:gain 3q+:gain 5q-:loss 4q-:loss 8p-:loss 1q+:gain Xp-:loss

0.7011494 0.5517241 0.5287356 0.5057471 0.4712644 0.4367816 0.4252874

> confidence.data.joint(topology)

8q+:gain 3q+:gain 5q-:loss 4q-:loss 8p-:loss 1q+:gain Xp-:loss

8q+:gain 0.7011494 0.4827586 0.4022989 0.4022989 0.4252874 0.2988506 0.3218391

3q+:gain 0.4827586 0.5517241 0.3333333 0.2988506 0.2988506 0.2643678 0.2758621

5q-:loss 0.4022989 0.3333333 0.5287356 0.3908046 0.3678161 0.2298851 0.2988506

4q-:loss 0.4022989 0.2988506 0.3908046 0.5057471 0.3448276 0.2413793 0.2873563

8p-:loss 0.4252874 0.2988506 0.3678161 0.3448276 0.4712644 0.1954023 0.3103448

1q+:gain 0.2988506 0.2643678 0.2298851 0.2413793 0.1954023 0.4367816 0.1954023

Xp-:loss 0.3218391 0.2758621 0.2988506 0.2873563 0.3103448 0.1954023 0.4252874
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Figure 2: Probabilities (input data): visualisation and comparison with model’s predictions.
Top: observed frequencies of observed, joint and conditional distributions of events (conditionals are
restricted according to the reconstructed progression model) as emerge from the data. Bottom: difference
between observed and fitted probabilities, according to the reconstructed progression.

> confidence.data.conditional(topology)

8q+:gain 3q+:gain 5q-:loss 4q-:loss 8p-:loss 1q+:gain Xp-:loss

1.0000000 0.6885246 1.0000000 0.7391304 0.6065574 1.0000000 0.6585366

In a similar way, by using confidence.fit.single(topology), confidence.fit.joint(topology)

or confidence.fit.conditional(topology), the analogous probabilities can be assessed according to
the model. This are not shown in this vignette.

The difference between observed and fit probabilities can be visualised as follows.

> confidence.single(topology)

8q+:gain 3q+:gain 5q-:loss 4q-:loss 8p-:loss 1q+:gain

0.00000000 -0.02622809 0.00000000 -0.04898781 -0.04880958 0.00000000

Xp-:loss

-0.06640509

> confidence.joint(topology)

8q+:gain 3q+:gain 5q-:loss 4q-:loss 8p-:loss

8q+:gain 0.000000000 0.011991503 0.00000000 0.02808834 0.010747173

3q+:gain 0.011991503 -0.004805063 0.02040118 -0.01135714 0.011736173

5q-:loss 0.000000000 0.020401180 0.00000000 -0.02379790 0.092338948

4q-:loss 0.028088341 -0.011357135 -0.02379790 -0.01704690 0.071838213

8p-:loss 0.010747173 0.011736173 0.09233895 0.07183821 -0.001166571
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1q+:gain 0.000000000 -0.006400071 0.00000000 -0.01583318 -0.041573393

Xp-:loss -0.004093925 0.007657191 0.04174007 0.03261753 -0.032038023

1q+:gain Xp-:loss

8q+:gain 0.000000000 -0.004093925

3q+:gain -0.006400071 0.007657191

5q-:loss 0.000000000 0.041740070

4q-:loss -0.015833176 0.032617531

8p-:loss -0.041573393 -0.032038023

1q+:gain 0.000000000 -0.025002872

Xp-:loss -0.025002872 -0.005904709

> confidence.conditional(topology)

8q+:gain 3q+:gain 5q-:loss 4q-:loss 8p-:loss

0.0000000000 0.0171026351 0.0000000000 -0.0450090696 0.0153279358

1q+:gain Xp-:loss

0.0000000000 0.0002016449

Bootstrap confidence.

Confidence in a model can be estimated via parametric and non-parametric bootstrap. In the former
case, the model is assumed to be correct and data is sampled by the model, in the latter case resamples
are taken from the input data, with repetitions. In any case, the reconstruction confidence is the number
of times that the estimated tree or edge is inferred out of a number of resamples. The parameters of the
bootstrap procedure can be custom set.

> set.seed(12345)

> topology <- tronco.bootstrap(topology, type="non-parametric", nboot=1000)

Executing bootstrap algorithm this may take several time...

Executed non-parametric bootsrap with 1000 as sampling number and 0.5 as lambda value

8q+:gain 3q+:gain 5q-:loss 4q-:loss 8p-:loss 1q+:gain Xp-:loss

8q+:gain 0 0.931 0 0.000 0.489 0 0.000

3q+:gain 0 0.000 0 0.000 0.000 0 0.000

5q-:loss 0 0.000 0 0.529 0.000 0 0.000

4q-:loss 0 0.000 0 0.000 0.000 0 0.000

8p-:loss 0 0.000 0 0.000 0.000 0 0.625

1q+:gain 0 0.000 0 0.000 0.000 0 0.000

Xp-:loss 0 0.000 0 0.000 0.000 0 0.000

Confidence overall value: 72

Confidence overall frequency: 0.072

> tronco.bootstrap.show(topology)

8q+:gain 3q+:gain 5q-:loss 4q-:loss 8p-:loss 1q+:gain Xp-:loss

8q+:gain 0 0.931 0 0.000 0.489 0 0.000

3q+:gain 0 0.000 0 0.000 0.000 0 0.000

5q-:loss 0 0.000 0 0.529 0.000 0 0.000

4q-:loss 0 0.000 0 0.000 0.000 0 0.000

8p-:loss 0 0.000 0 0.000 0.000 0 0.625

1q+:gain 0 0.000 0 0.000 0.000 0 0.000

Xp-:loss 0 0.000 0 0.000 0.000 0 0.000

In this case, for instance, we are performing non-parametric bootstrap (the default one) with 1000
repetitions and, since no shrinkage coefficient is specified, we are still using 0.5. Here the estimated error
rates are used to include noise levels estimated from the data/model. To perform parametric bootstrap
is enough to use the flag type="parametric".
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> set.seed(12345)

> topology <- tronco.bootstrap(topology, type="parametric", nboot=1000)

Executing bootstrap algorithm this may take several time...

Executed parametric bootsrap with 1000 as sampling number and 0.5 as lambda value

8q+:gain 3q+:gain 5q-:loss 4q-:loss 8p-:loss 1q+:gain Xp-:loss

8q+:gain 0 0.632 0 0.00 0.544 0 0.000

3q+:gain 0 0.000 0 0.00 0.000 0 0.000

5q-:loss 0 0.000 0 0.76 0.000 0 0.000

4q-:loss 0 0.000 0 0.00 0.000 0 0.000

8p-:loss 0 0.000 0 0.00 0.000 0 0.661

1q+:gain 0 0.000 0 0.00 0.000 0 0.000

Xp-:loss 0 0.000 0 0.00 0.000 0 0.000

Confidence overall value: 186

Confidence overall frequency: 0.186

> tronco.bootstrap.show(topology)

8q+:gain 3q+:gain 5q-:loss 4q-:loss 8p-:loss 1q+:gain Xp-:loss

8q+:gain 0 0.632 0 0.00 0.544 0 0.000

3q+:gain 0 0.000 0 0.00 0.000 0 0.000

5q-:loss 0 0.000 0 0.76 0.000 0 0.000

4q-:loss 0 0.000 0 0.00 0.000 0 0.000

8p-:loss 0 0.000 0 0.00 0.000 0 0.661

1q+:gain 0 0.000 0 0.00 0.000 0 0.000

Xp-:loss 0 0.000 0 0.00 0.000 0 0.000

Results of bootstrapping are visualized as a table (useful for edge confidence), and as a heatmap by
using command tronco.bootstrap.show. The overall model confidence is reported, too. In Figure 3
results of bootstrap are shown. If one is willing to visualize this confidence in the plot of the inferred
tree an input flag confidence can be used with function tronco.plot. For instance:

> tronco.plot(topology, title="Ovarian cancer progression with CAPRESE", legend.title="CGH events",

+ legend.coeff = 1.0, label.coeff = 1.2, legend = TRUE, confidence = TRUE)

Plot created successfully

In this case, the thicker lines reflect the most confident edges; confidence is also reported as labels of
edges, as shown in Figure 4
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Edge confidence (non−parametric bootstrap)
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Edge confidence (parametric bootstrap)
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Figure 3: Bootstrap for edge confidence. Non-parametric and parametric confidence in each recon-
structed edge as assessed via bootstrapping.

Ovarian cancer progression with CAPRESE
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Figure 4: Bootstrap information included in the model. You can include the result of edge
confidence estimation via bootstrap by using flag confidence. In this case the thickness of each edge is
proportional to its estimated confidence.
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