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fib 0 = leaf 0; fib 1 = leaf 1

fib n = BNode n (fib (n-1)) (fib (n-2))

tree

= renderTree’

(\i -> circle 0.3 # lw 0 # fc (colors !! i))

(\(i,p) (_,q) -> p ~~ q # lc (colors !! i))

. fromJust . symmLayoutBin $ fib 8
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Haskell makes a great host language for DSLs:

• strong static type system

• first-class functions

• powerful abstraction mechanisms

• culture that encourages elegant, mathematically-based
design: theory meets practice

Full disclosure:

• Error messages suck
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Abstraction

Haskell has powerful abstraction mechanisms.

square :: (TrailLike t, Transformable t, V t ~ R2)

=> Double -> t



Design

Haskell encourages elegant, mathematically-based design.

F=F+F

=+

=+

=+

=+



Design

Haskell encourages elegant, mathematically-based design.

F=F+F

=+

=+

=+

=+



Design

Monoids: Theme and Variations (Functional Pearl)

Brent A. Yorgey
University of Pennsylvania
byorgey@cis.upenn.edu

Abstract
The monoid is a humble algebraic structure, at first glance even
downright boring. However, there’s much more to monoids than
meets the eye. Using examples taken from the diagrams vector
graphics framework as a case study, I demonstrate the power and
beauty of monoids for library design. The paper begins with an
extremely simple model of diagrams and proceeds through a series
of incremental variations, all related somehow to the central theme
of monoids. Along the way, I illustrate the power of compositional
semantics; why you should also pay attention to the monoid’s
even humbler cousin, the semigroup; monoid homomorphisms; and
monoid actions.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.2.2 [Design
Tools and Techniques]

General Terms Languages, Design

Keywords monoid, homomorphism, monoid action, EDSL

Prelude
diagrams is a framework and embedded domain-specific language
for creating vector graphics in Haskell.1 All the illustrations in
this paper were produced using diagrams, and all the examples
inspired by it. However, this paper is not really about diagrams
at all! It is really about monoids, and the powerful role they—and,
more generally, any mathematical abstraction—can play in library
design. Although diagrams is used as a specific case study, the
central ideas are applicable in many contexts.

Theme
What is a diagram? Although there are many possible answers to
this question (examples include those of Elliott [2003] and Matlage
and Gill [2011]), the particular semantics chosen by diagrams is
an ordered collection of primitives. To record this idea as Haskell
code, one might write:

type Diagram= [Prim ]

But what is a primitive? For the purposes of this paper, it doesn’t
matter. A primitive is a thing that Can Be Drawn—like a circle, arc,

1 http://projects.haskell.org/diagrams/
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Figure 1. Superimposing a list of primitives

polygon, Bézier curve, and so on—and inherently possesses any
attributes we might care about, such as color, size, and location.

The primitives are ordered because we need to know which
should appear “on top”. Concretely, the list represents the order
in which the primitives should be drawn, beginning with the “bot-
tommost” and ending with the “topmost” (see Figure 1).

Lists support concatenation, and “concatenating” two Diagrams
also makes good sense: concatenation of lists of primitives corre-
sponds to superposition of diagrams—that is, placing one diagram
on top of another. The empty list is an identity element for con-
catenation ([ ] ++ xs = xs++ [ ] = xs), and this makes sense in the
context of diagrams as well: the empty list of primitives represents
the empty diagram, which is an identity element for superposition.
List concatenation is associative; diagram A on top of (diagram B
on top of C) is the same as (A on top of B) on top of C. In short,
(++) and [ ] constitute a monoid structure on lists, and hence on
diagrams as well.

This is an extremely simple representation of diagrams, but it
already illustrates why monoids are so fundamentally important:
composition is at the heart of diagrams—and, indeed, of many
libraries. Putting one diagram on top of another may not seem very
expressive, but it is the fundamental operation out of which all other
modes of composition can be built.

However, this really is an extremely simple representation
of diagrams—much too simple! The rest of this paper develops
a series of increasingly sophisticated variant representations for
Diagram, each using a key idea somehow centered on the theme of
monoids. But first, we must take a step backwards and develop this
underlying theme itself.

Interlude
The following discussion of monoids—and the rest of the paper in
general—relies on two simplifying assumptions:
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• Google Summer of Code project to allow editing
diagrams.

• Animations and interactivity.

• Bidirectional GUI/code editor.

• Open to suggestions!
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Backends

and:

• OpenGL

• HTML5 canvas

• PGF/TikZ

• PDF

• native Haskell raster library



shapes = hcat’ (with & sep .~ 3)

[ square 2 # fc green # named "s"

, circle 1 # fc blue # named "c"

]

dia = shapes

# connectOutside’ (with & gap .~ 0.2)

"s" "c"



dia = hcat’ (with & sep .~ 1)

[ square 1

, mconcat

[ square 1

, square 1 # reversePath # rotateBy (1/7))

]

# stroke # fc red

, square 1 # map (place dot) # mconcat

]

where

dot = circle 0.2 # fc blue # lw 0


