Declarative, Programmatic Vector
Graphics in Haskell

Brent Yorgey

Libre Graphics Meeting
Leipzig
3 April, 2013

Math/PL theory Vector graphics

Diagrams

A L

Math/PL theory Diagrams Vector graphics

Embedded in Haskell.

circle 1 # fc green ||| square 2 # fc blue

circle 1 # fc green ||| square 2 # fc blue

Look ma, no coordinates!

]
] | [o [] [[]
o e & 9 9 9 00en » 900000
(S N A XN RN RN NN NN NN NNNNNNN)
(A X X NN XX J (X J (X J
[X J

fib 0 = leaf 0; fib 1 = leaf 1
fib n = BNode n (fib (n-1)) (fib (n-2))
tree

= renderTree’

(\i -> circle 0.3 # 1w O # fc (colors !! i))
A\G,p) (L,9) > p "~ q # 1c (colors !! 1))
. fromJust . symmLayoutBin $ fib 8

Haskell and EDSLs

Haskell makes a great host language for DSLs:
e strong static type system
e first-class functions
e powerful abstraction mechanisms

e culture that encourages elegant, mathematically-based
design: theory meets practice

Haskell and EDSLs

Haskell makes a great host language for DSLs:
e strong static type system
e first-class functions
e powerful abstraction mechanisms

e culture that encourages elegant, mathematically-based
design: theory meets practice

Full disclosure:

e Error messages suck

Types

Haskell has a strong static type system.

Types

Haskell has a strong static type system.

points o paths Y

vectors .
/ transformations F g

colors .)
diagrams

Impossible to make silly mistakes like applying a vector to a
color, or adding two points.

Functions

Haskell has first-class functions.

Functions

Haskell has first-class functions.

/

Abstraction

Haskell has powerful abstraction mechanisms.

Abstraction

Haskell has powerful abstraction mechanisms.

square :: Double -> Diagram

Abstraction

Haskell has powerful abstraction mechanisms.

square :: (Traillike t, Transformable t, V t ~ R2)
=> Double -> t

Design

Haskell encourages elegant, mathematically-based design.

Design

Haskell encourages elegant, mathematically-based design.

o+ =0
o+ =@
H+8=0
I+ N\ =N
F + v =

Design

Monoids: Theme and Variations (Functional Pearl)

Brent A, Yorgey
Univensity of Pennsylvania
byorgeycis.upenn edu

Abstract

The ovid . bl st s, st e e
downrih boring. Howew ach mors 0 monolds han
Inetsthe eye. Usng cxampes ket fro i fagrams vctor
e Tamenork 8 & as iy, | demonsirae ih power
ety of monods o by design The papr besins i s
ey gl model o darams i prceds o i
oFineremenal vaation,

ofmenoids Alog e

i
H

e .uv-.

by You i o oy o 1 i mons
m:. oo, s, oo homomrpana; d

ool aciong

§
:Z
R

Cotgoir and Suect Desripters DL (P ek
nigues]: Applicative (Functional) Programming: D22 [Des
Tools and Techniques)

General Terms Languiges, Desgn

Heywords monoid, bomomorphisn, monoid sction, EDSL.

Prelude

diagrams is a framework and embedded domain-specific nguage.

fr cruing yetor g n Hkell! Al e s i

i paper e prduced g diagrams, nd e cxmics

inspired by 1. Hovever, s papr 1 ot Tealy about dagrams
sy o i, mmmmmmum\um) and.

i

Figure 1. Superimposing o s of primitives

polygon. Bézier curv, and o on—and inherently posesse
‘b we mighi care abou, such as colo, 7. and ocation.
iniven e e e e e 10w Wi

ol oy o . Comtly i L ot e
whic the primitives should be vith e
ot an ndig wilh Wllmm(i
s suppont concatenaton, and “concatcnating mmamm.

ko makes pood sens: concaenation of Tt of pimiivs o

-

in ibary
e Ao g o s i et sty e
centralidessare spplicale in many context.
Theme
S g Akhngh sy ol s o
his qestion examples include those of Elot 2003]and Matlge.
ind Gl (3011, the particuar semantes chsen by diagrams
e oo o fpmmmn T record this idea s Haskell
code, one might

oo ingram P

n o of e The ey s iyl o con

o l«m o1 Cy i the
and (| contitae 3 monoid sructure on T,
du«mm\ as el
i sn extremely simple representation of disgrams, bt it
ity Tosrmes iy o e 2 ot m.m.mx
composition i at the beart of diagrams—and. indecd. of many
Tiracs. g on dlageur o opof st iy 0t st Vry

Howeve s sl s an xemely simle eorseniation
o ch o splet The e of (s paer devlops
' ek of mereminly sophisticaid vaant represeation o
iagram,cach using a ey s somehow centred on the hee of
monoide. But firt we must ke a sep backwards and develop this

ki 15 S

Interlude

oo o B AN ST s L S0

—and the est of the paper in
general-relics on two simpliying assumptions:

Examples

Kaleidescope ‘Sunburst partition

Sunflower

Symmetry Cube

Square Limit

Sl =X)

Simple Chart Knight tour Factorization diagrams

Examples

What's next?

What's next?

+||- b m - b e

O L e B (et Jr«
H-t-th H

N S F

L e DS R

e IR 12

O N RCTa e Y

b ot

- m e |--|-|-|}<|H-|-
H
I

What's next?

m soarss |

Diagrams et g

o using .5
g s

make Roth e Sl
change et o
Diaram a5 o7

sianed comesion
Combnsior

“ubdigram sharingvith
Rashng

consitent ne wan font s,

pandcdagrams paciage

m e s v
ez and e vecre

monsd b for Ace
cunnvercina

g andcose

oSt ordeiting
subdgrans

[rmp—
s cars.

Projects

pr—
ey
dagrams gha

i st

[p—

port aer vy o 5>
pesl 0 dorgans

d union,erseston of
solds 1 5, poway, opencad

et i e
o e
[T ——
e

44 cusiom i syes for
sty

vmrg;h over pmities

m e s

Todo

Jo—
Aiow excepians 05
Test packages wih GHC 7.8

improe help message
especan wih i
crampls

0430 pats ufies)
et common backend
Famevorc

Lokt eparamererzaion
enanges

Look acomment on R2
generazatn

18 CoNTRIBUTING md 0
dngrams 105
s detah e

it 5 ca

& B oo

Buid faures Ryan

dngrams.doc ke oetor
Jocks ht rame s at can backends e 49
;.mwmm et &8
dagramsconiy modie(s) fortving sting o code w0
s [———
| Remove| !
dd crample of e, pob

it vt wede 0 user
manial

[———

What's next?

e Google Summer of Code project to allow editing
diagrams.

What's next?

e Google Summer of Code project to allow editing
diagrams.

e Animations and interactivity.

What's next?

e Google Summer of Code project to allow editing
diagrams.

e Animations and interactivity.

e Bidirectional GUI/code editor.

What's next?

Google Summer of Code project to allow editing
diagrams.

Animations and interactivity.
Bidirectional GUI/code editor.
Open to suggestions!

http://projects.haskell.org/diagrams

http://projects.haskell.org/diagrams

Extra slides

Backends

a

Adobe’ PostScript' 3

and:

OpenGL
HTML5 canvas
PGF/TikZ

e PDF

native Haskell raster library

O,

shapes = hcat’ (with & sep .~ 3)
[square 2 # fc green # named "s"
, circle 1 # fc blue # named "c"
]
dia = shapes
connectOutside’ (with & gap .~ 0.2)
IISII llCll

dia = hcat’ (with & sep .~ 1)
[square 1
, mconcat
[square 1
, square 1 # reversePath # rotateBy (1/7))
]
stroke # fc red
, square 1 # map (place dot) # mconcat
]
where
dot = circle 0.2 # fc blue # 1w O

