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Look ma, no coordinates!
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fib 0 = leaf 0; fib 1 = leaf 1
fib n = BNode n (fib (n-1)) (fib (n-2))
tree

= renderTree’

(\i -> circle 0.3 # 1w O # fc (colors !! i))
A\G,p) (L,9) > p "~ q # 1c (colors !! 1))
. fromJust . symmLayoutBin $ fib 8



Haskell and EDSLs

Haskell makes a great host language for DSLs:
e strong static type system
e first-class functions
e powerful abstraction mechanisms

e culture that encourages elegant, mathematically-based
design: theory meets practice
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Full disclosure:

e Error messages suck



Types

Haskell has a strong static type system.
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Haskell has a strong static type system.
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Impossible to make silly mistakes like applying a vector to a
color, or adding two points.
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square :: Double -> Diagram



Abstraction

Haskell has powerful abstraction mechanisms.

square :: (Traillike t, Transformable t, V t ~ R2)
=> Double -> t
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Design
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Examples

Kaleidescope ‘Sunburst partition

Sunflower

Symmetry Cube

Square Limit

Sl =X )

Simple Chart Knight tour Factorization diagrams
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What's next?
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What's next?

e Google Summer of Code project to allow editing
diagrams.
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What's next?

Google Summer of Code project to allow editing
diagrams.

Animations and interactivity.
Bidirectional GUI/code editor.
Open to suggestions!



http://projects.haskell.org/diagrams


http://projects.haskell.org/diagrams

Extra slides



Backends

a

Adobe’ PostScript' 3

and:

OpenGL
HTML5 canvas
PGF/TikZ

e PDF

native Haskell raster library

O,



shapes = hcat’ (with & sep .~ 3)
[ square 2 # fc green # named "s"
, circle 1 # fc blue # named "c"
]
dia = shapes
# connectOutside’ (with & gap .~ 0.2)
IISII llCll



dia = hcat’ (with & sep .~ 1)
[ square 1
, mconcat
[ square 1
, square 1 # reversePath # rotateBy (1/7))
]
# stroke # fc red
, square 1 # map (place dot) # mconcat
]
where
dot = circle 0.2 # fc blue # 1w O



