
TEXcount∗
Perl script for counting words in LATEX documents

Version 2.2

ABSTRACT

TEXcount is a Perl script for counting words in LATEX documents. It recognizes most of the common
macros, and has rules for which parameters to count and not to count; the main text is counted
separately from the words in headers and in captions of figures and tables. Finally, it produces a
colour coded version of the parsed document, either as a text document or as HTML to be viewed in
a browser, indicating which parts of the document have been included in the count.

Contents
1 What does TEXcount do? 1

1.1 What TEXcount does not do . 2

2 Syntax and options 2
2.1 Running TEXcount . 2
2.2 Parsing details . 4
2.3 Summary information . 4
2.4 Parsing options . 5
2.5 File inclusion . 5

3 What TEXcount counts 5

4 Macro handling rules 6
4.1 Cautions! . 7

5 TEXcount instructions in the LATEX document 7
5.1 Ignoring segments of the file . 7
5.2 Adding subcount break points . 7
5.3 Adding macro handling rules . 8

6 License 9

1 What does TEXcount do?
TEXcount is a Perl script made for counting the words in a LATEX document. Since LATEX documents are
formated using lots of macro instructions and often contain both mathematical formulae and floating tables
and figures, this is no trivial task.

Simple solutions to counting the words consists of detexing the documents, which often merely consisty
of ignoring the TEX and LATEX instructions. This is a bad solution since it will usually result in over-
estimating the number of words as mathematical formulae, citations, labels and references are counted.

A perfect solution, if such exists, needs to take into account how LATEX interprets each macro instruc-
tion. The simplest approach to taking this into account consisty of making the count based on the typeset
∗Copyright (2008-2009) of Einar Andreas Rødland, distributed under the LATEX Project Public Licence (LPPL).

1

document, but this too tends to over-estimate the word count as mathematical formulae, table contents and
even page numbers may get counted.

A simple but robust approach, which is the one I have taken with TEXcount, is to parse the LATEX
document using simple rules for how to interpret the different TEX and LATEX instructions. Rules for most
of the common macro instructions are included in TEXcount, and it is possible to specify new rules in the
TEX document.

The primary focus of TEXcount is to:

• provide an accurate count of the number of words in LATEXdocuments;

• exclude or count separately document elements which are not part of the main text such as figure
captions;

• enable the user to, with relative ease, check how TEXcount has parsed the document and which
elements have been counted and which have not.

The last point on this list is one of the most important. Having an accurate word count is of little value
unless you know that it is accurate; conversly, trusting an inaccurate word count can be potentially harmful,
e.g. if you are submitting a paper or a report which has a strict word limit.

TEXcount handles complete LATEX documents, i.e. that start with \documentclass and has the text
between \begin{document} and \end{document}, as well as partial documents made to be included in
another LATEX document. Automatic inclusion of included documents is possible, but is by default turned
off.

Since TEXcount relies on a relatively simple rules for how to handle the different macros and only
performs limited checks on the validity of the LATEX document, it is your responsibility to make sure the
document actually typesets in LATEX before running it through TEXcount. Also, TEXcount relies on handling
macros taking parameters enclosed with { and }, and on ignoring options enclosed by [and]: macros with
significantly different syntax such as \vskip cannot be handled.

1.1 What TEXcount does not do
While an ideal solution should be able to expand the macro instructions, thus being able to handle new
macros, that would at it’s worst require reimplementing much of TEX, something that is clearly unrealistic.
While some limited methods for handling new macros based on definitions in the file might be done, I have
opted for a simpler solution: to define rules stating which paramters to count and which to ignore. Thus,
TEXcount cannot handle macros that may take a variable number of parameters. Nor can it handle macros
that takes parameters on forms other than {parameter}.

In general, while TEXcount does the parsing in some detail, it does not do it exacly as TEX does it.
In some respects there may therefore be critical difference: e.g. while TEX reads one character at a time,
TEXcount reads one word at a time, so while LATEX would interpret \cite me as \cite{m}e, TEXcount
would interpret it like \cite{me}.

Another issue is that, since TEXcount does not know how to expand macros, it cannot handle macros
like \maketitle. Instead, it will count \title{title text} when it occurs.

For users of languages containing letters other than A to Z, there may be an additional challenge. The
script relies on Perl to recognize words as sequence of letters, and must therefore know which characters are
considered to be letters. The Perl locale may be changed (as of now this is hard-coded!) to accommodate
this, but this does not work for special letters encoded using TEX or LATEX macros or codes: e.g. \aa and
\"a will not be understood to be letters in the present implementation, whereas å and ä will. I have added a
relaxed mode where some special character and character modifying macros are allowed as parts of words,
which may be activated with the option -relaxed.

2 Syntax and options

2.1 Running TEXcount
The command to run TEXcount may vary slightly depending on the operating system and the local settings.

2

Under Linux/Unix, it should be sufficient to run texcount.pl provided it is in the PATH and has
been made executable (chmod u+x texcount.pl). The first line of the file, the one starting with #!,
tells Linux/Unix which command to use to run the script. This may either direct to the perl command
giving the full path to it (use which perl if you need to find out where perl is located) or, as is done in
more recent versions of TEXcount, contain the line #!/usr/bin/env perl which should find the correct
location for perl (provided the program /usr/bin/env is available).

Under Windows, running texcount from the command line suffices if texcount.pl is in the path
and pl-files are defined to run as Perl scripts.

Alternatively, if the above methods do not work, you may have to execute it more exclicitly under Perl
using perl texcount.pl. You then need to have the perl executable file in the path or give the explicit
path.

I will simply write texcount in this manual for the code to execute the script. Then, the syntax
becomes

texcount [options] [files]

where the options may be amongst the following:

-v Verbose (same as -v3).

-v0 No details (default).

-v1 Prints counted text, marks formulae.

-v2 Also prints ignored text.

-v3 Also includes comments and options.

-v4 Same as -v3 -showstate.

-showstate Show internal states (with verbose).

-brief Only prints a one line summary of the counts.

-q, -quiet Quiet mode, does not print error messages. Use is discouraged, but it may be useful when
piping the output into another application.

-total Only give total sum, no per file sums.

-1 Same as specifying -brief and -total, and ensures there will only be one line of output. If used
with -sum, the output will only be the total number.

-sub[=...], -subcount[=...] Generate subcounts. Valid option values are none, part, chapter,
section and subsection (default), indicating at which level subcounts are generated.

-sum[=n,n,...] Produces total sum, default being all words and formulae, but customizable to any
weighted sum of the seven counts (list of weights for text words, header words, caption words,
headers, floats, inlined formulae, displayed formulae).

-nc, -nocol No colours (colours require ANSI).

-relaxed Relaxes the rules for matching words and macro options.

-inc Include tex files included in the document.

-noinc Do not include included tex files (default).

-dir[=...] Working directory, either taken from the first file given, or specified.

-utf8, -unicode Turn on Unicode (UTF-8) support.

3

-ch, -chinese, -zhongwen Turn on Chinese mode in which Chinese characters are counted. Switches
on UTF-8 mode.

-jp, -japanese Turn on Japanese mode in which Japanese characters (kanji and kana) are counted.
Switches on UTF-8 mode.

-html Output in HTML format.

-htmlcore Only HTML body contents.

-codes Display an overview of the colour codes. Can be used as a separate option to only display the
colour codes, or together with files to parse.

-nocodes Do not display overview of colour codes.

-h, -?, -help, /? Help.

-version Print version number.

-license License information.

If more than one file is given, TEXcount will perform the count on each of them printing the results for
each, then print the total sum at the end.

2.2 Parsing details
By selecting one of the -v options, you can choose how much detail is printed. This is useful for checking
what TEXcount counts. The option -showstate shows the internal state and is for debugging purposes
only.

The output is colour coded with counted text coloured blue, other colours for other contexts. The
colour coding is made using ANSI colour codes. These should work when printed directly to Linux xterm
window, but need not work if piped through more or less: with less you need to use the option -r for
the colours to be shown correcly.

Under Windows or other operating systems, the ANSI colour codes cannot be expected to work, in
which case the option -nocol (-nc) may be used to turn off colour coding; instead I recommend using
HTML output which can be viewed in a browser.

To print the details encoded as HTML code, use the option -html; alternatively, with -htmlcore only
the HTML body is printed. On Windows, I suggest using the options -html -v to get full detail, save this
to a HTML file, e.g. using

texcount -html -v texfile.tex > details.html

and then view the details.html file in a browser.

2.3 Summary information
By default, TEXcount outputs counts of text words, header words, caption words, number of headers,
number of floats/figures, number of inlined formulae, and number of displayed formulae, and lists each of
these counts. To shorten this to a one-line format, specify -brief.

To get TEXcount to produce a total count, specify -sum: this will compute the sum of all words plus
the number of formulae. A customized sum may be computed by speficying -sum=n,n,... with up to
seven numbers separated by commas giving the weight (0=don’t count, 1=count once) of each of the seven
counts: e.g. the default is equivalent to -sum=1,1,1,0,0,1,1. To count words only, use -sum=1,1,1.
Higher weights may also be used, e.g. to count displayed formulae or floats/figures as a given number of
words.

Specifying -sum has two main effects: the cumulative sum is added to the output in verbose formats,
and the sum is added to the summary. If combined with -brief, the option -total is automatically set,
resulting in a one line output containing only the total sum.

4

For adding subcounts e.g. by sections, the option -sub (or -subcount) may be used. By default,
this produces subcounts by part, chapter, section and subsection which are listed in a brief format. One
may, however, specify -sub= followed by part, chapter, section, or subsection (default when
given without value). Break points which initiate a new subcount may also be specified within the LATEX
document using %TC:break name.

If included files are included in the count (-inc), counts per file will be produced followed by a total
count. To suppress per file counts, the option -total may be used.

2.4 Parsing options
TEXcount uses regular expressions to identify words and macro options. By default, these are moderately
strict, but can be relaxed using the option -relaxed. This allows more general document elements to
be identified as words or macro options, which may sometimes be desired, but may also have undesirable
effects, so check the verbose output to verify that TEXcount has counted the appropriate elements.

Macro options, i.e. [...] after macros and macro parameters are ignored. Since TEXcount has no
specific knowledge of which macros take options, this is a general rule. In order to avoid that uses of
[. . .] that are not macro options are mistaken as such, TEXcount makes some restrictions on what may be
contained in such an option. By default, this restriction is relatively strict under the assumption that it is
better to count a few macro options as words than risk large fragments of text to be ignored. However, if
your document contains macro options with more complicated values (e.g. certain special characters or
macros), using -relaxed may help handle these correctly.

By default, TEXcount does not allow special characters or macros to be part of words. This may cause
problems if character modifiers or some special characters are used which are entered as macros. The
-relaxed option makes the word recognition regular expression somewhat more general.

2.5 File inclusion
If the option -inc is used, TEXcount will automatically count documents that are included (using \input

or \include. As when giving a list of files to count, it will print the sum per file and a total sum at the
end. The default is -noinc indicating that included documents are not counted.

By default, TEXcount assumes paths are relative to the working directory. Alternatively, an explicit path
may be given using -dir=path. Note that the path must end in the path delimiter symbol (depending on
the operating system, / under Linux, \under Windows). If only -dir is used, the path of the first file given
will be used.

Note that included documents are analysed as separate files: the text of included documents are thus
not included where the \input or \include is located. This has two consequences. First, since word
counts are produced per file, subcounts f.ex. by chapter will only include the text in the same file as the
\chapter macro. Secondly, if TC-instructions to TEXcount are embedded in the LATEX document, e.g.
defining additional macro handling rules, these take effect in the order they are parsed by TEXcount. Since
included documents are parsed after the parent document, definitions in the parent document will be in
effect for the included documents; definitions made in the included documents will only be in effect for
subsequently included documents, not in the parent or previously included documents.

3 What TEXcount counts
The primary role is to count the words. It is not entirely clear what should be considered words, so I have
had to make some decisions. A sequence of letters is certainly a word. I also count acronyms like ‘e.g.’,
dashed words like ‘over-all’, and ‘it’s’ as one word. I have decided also to count numbers as words unless
they are placed in a math environment.

Mathematical formulae are not counted as words. Instead, TEXcount counts the number of inline for-
mulae ($maths$) and displayed formulae separately.

Text in headers (\title, \section, etc.) are counted separately: it counts the number of headers as
well as the number of words in headers.

5

Floating environments (or potentially floating environments) such as tables and figures are not counted
as text, even if the cells of a table may containt text. However, if they have captions, these will be counted
separately much like headers were. By default, begin–end environments do not modify the parsing state:
i.e. environments within the text are counted as text, etc. Rules for the most common environments, at
least those that require non-default treatment, should be predefined, but you may have to add more rules if
you use environments defined in packages or by yourself.

Some macros are words by themselves: e.g. \LaTeX. These are counted as words, but you cannot
expect TEXcount to count something like \LaTeX-word or \{\TeX\}count as one word, although the
above explanation inicates that it should: TEXcount will in both cases evaluate the macro and the following
text separately and thus count them as separate entities.

4 Macro handling rules
A very few rules are hard-coded, e.g. that text between \documentclass and \begin{document} is the
preamble of the LATEX document which should be default not be included in the count. However, most of
the rules consists fall into a few general categories:

macro In its simplest form, this type of rule just tells how many parameters to ignore following the macro.
More generally, one may specify the number of parameters a macro takes and how each of these
should be handled. Options enclosed in [] before, between and after parameters are also ignored;
this also applies to macros not specified here, so for a macro with no rule, immediately following []-
options will be ignored. (This type of rule was called an exclude rule in older versions of TEXcount,
the reason being that the rule originally only gave the number of parameters to ignore following a
given macro.)

header Some macros are specified to be counted as headers. This initially only indicates that the macro
should cause the number of headers to be increased by one, but an additional rule is added to the
macro-rule to count the following parameter as header text.

group For groups enclosed by \begin{name} and \end{name}, there are rules specifying how the con-
tents should be interpreted. A macro rule is added for beginname (without the backslash!) which
is TEXcount’s internal representation of \begin{name}. Some special characters will be ignored
if following name, e.g. \begin{equation*} will be treated as \begin{equation} since * is
ignored.

macroword This type of rule indicates that the macro itself represents one or more words. Initially,
\LaTeX and \TeX are defined with values 1 indicating that each represents one word.

preamble A few macros should be counted even if they are in the preamble. In particular, \title{title
text} is counted as a header assuming it will later be used to produce a title.

float inclusion Within floats (begin-end groups defined with parsing status −1) there may be texts that
should still be counted: in particular captions. These are specified with the float inclusion rule.

file include If -inc is specified, included files will also be parsed and the total presented at the end.
Initially, \input and \include trigger file inclusion, but more file inclusion macros may be added.

A macro parameter is normally something on the form {something}; more generally it may be any-
thing TEXcount parses as a single unit (or token), e.g. a macro, but since TEXcount parses word by word
rather than character by character this may not always be correct if parameters are not {}-enclosed or
macros.

6

4.1 Cautions!
Since the rules are of a relatively general nature, macros that have a great deal of flexibility are hard to deal
with. In particular this applies to macros with a variable number of parameters or where the handling of
the parameters are not constant.

Also, []-options following macros and macro parameters are always ignored, and TEXcount gives no
flexibility in over-ruling that. Since options are, by definition of the term, meant to be optional, extending
TEXcount to handle them would require extensive reprogramming as well as require much more detailed
macro definition rules than what is now possible.

More critically, since TEXcount does not really know which macros take options or not, just assumes
that options should never be included, there is some risk of misinterpreting as an option something that is
not: e.g. \bf[text]. This is not likely to be a frequent problem. However, if something like \bf[a lot

of text] gets ignored because it is considered an option, it can influence the word count substantially. I
have therefore been somewhat restrictive with what (and how much) can go into an option.

More advanced macros are not supported and can potentially confuse TEXcount. In partcular, if you
define macros that contain unbalanced begin–end groups, this will cause problems as TEXcount needs to
keep track of these to know where different groups start and end.

5 TEXcount instructions in the LATEX document
It is possible to give some instructions to TEXcount from within the LATEX document. The general format
of these instructions are

%TC:instruction [name] parameters

where the name parameter is used with macro handling instructions to specify the macro or group name
for which the rule applies.

Note that the comment should be on a separate line, and that instructions are case sensitive.

5.1 Ignoring segments of the file
The TC-instruction ignore, later canceled by endignore, may be used to turn of all counting in a segment
of the LATEX file. The ignored segment should thus be started by

%TC:ignore

end ended by

%TC:endignore

causing all text inbetween to be ignored. Note that TEXcount still parses this text and may be affected by
unbalanced brackets.

5.2 Adding subcount break points
By specifying -sub, TEXcount can produce subcounts, e.g. per section. Alternatively, or in addition,
explicit break points can be entered in the LATEX document using the TC-instruction break. These take the
form:

%TC:break title

A title (or name) may be given to identify the break point.
If you define new section macros or macros you wish to cause a break point, these may be specified

using the TC-instruction breakmacro:

%TC:breakmacro macro label

This defines the given macro to cause a break point, and uses the given label to indicate the type of break
(e.g. Section, Chapter, etc.).

7

5.3 Adding macro handling rules
Adding your own macro handling rules is relatively simple. Although editing the script is possible, and
not too difficult, this has the disadvantage that the modifications will be lost if updating to a new ver-
sion of TEXcount. A better and more flexible solution is to include instructions to TEXcount in the LATEX
documents, alternatively to make a definition file in which new macro handling rules are defined.

Comment lines on the form

%TC:instruction name parameters

encountered in the parsed document are used to add macro handling rules. The instruction states what kind
of rule, the name specifies the macro or begin-end group, and parameters specify the rule. Be aware that
these are not syntax checked and may produce either Perl errors or incorrect results if entered incorrectly.

Macro names should be entered with their full name starting with backslash. Internally, begin-end
groups are represented using macro names beginname without backslash, but rules for begin-end groups
are specified through a separate TC-instruction.

Note that macro handling rules are added successively throughout the session: i.e. if more files are
parsed, handling rules from previously parsed files still apply. This has advantages as well as disadvantages.
If you give a list of files with the rules specified in the first file, these rules will be applied to all the
documents. However, if you use the -inc option, included files will be parsed only after TEXcount has
finished parsing the file in which they are included, so any rules specified in these will not apply to the
initial document.

The instructions may be one of the following:

macro Define macro handling rule for the given macro. Takes one parameter which is either an integer
or a []-enclosed array of integers (e.g. [0,1,0]). An integer value n indicates that the n first
parameters to the macro should be ignored. An array of length n indicates that the first n parameters
should be handled, and the numbers of the array specifies the parsing status (see below) with which
they should be parsed. Giving the number n as parameter is equivalent to giving an array of n zeroes
([0,...,0]) as zero is the parsing status for ignoring text.

macroword This defines the given macro to represent a certain number of words, where the number is
given as the parameter.

header Define macro to give a header. This is specified much as the macro rule. The added effect is
that the header counter is increase by 1. Note, however, that you should specify a parameter array,
otherwise none of the parameters will be parsed as header text. The parser status for header text is
2, so a standard header macro that uses the first parameter as header should be given the parameter
[2].

breakmacro Specify that the given macro should cause a break point. Defining it as a header macro
does not do this, nor is it required of a break point macro that it be a header (although I suppose in
most cases of interest it will be).

group This specifies a begin-end group with the given name (no backslash). It takes two further parame-
ters. The first parameter speficies the macro rule following \begin{name}. The second parameter
specifies the parser status with which the contents should be parsed: e.g. 1 for text (default rule), 0
to ignore, −1 to specify a float (table, group, etc.) for which text should not be counted but captions
should, 6 and 7 for inline or displated math.

floatinclude This may be used to specify macros which should be counted when within float groups.
The handling rules are spefified as for macro, but like with header an array parameter should be
provided and parameters that should be counted as text in floats should be specified by parsing status
3. Thus, a macro that takes one parameter which should be counted as float/caption text should take
the parameter [3].

8

preambleinclude The preamble, i.e. text between \documentclass and \begin{document}, if
the document contains one, should generally not be included in the word count. However, there
may be definitions, e.g. \title{title text}, that should still be counted. In order to be able
to include these special cases, there is a preambleinclude rule in which one may speficy handling
rules for macros within the preamble. Again, the rule is speficied like the macro rules, but since the
default is to ignore text the only relevant rules to be specified require an array.

fileinclude By default, TEXcount does not automatically add files included in the document using
\input or \include, but inclusion may be turned on by using the option -inc. If other macros
are used to include files, these may be specifed by adding fileinclude rules for these macros. The
specification takes one parameter: 0 if the file name should be used as provided, 1 if file type .tex
should be added to files without a file type, and 2 if the file tyle .tex should always be added.

The parser status is used to dictat how each parameter should be parsed. E.g. if a macro has its
parameter set defined by [1,0,1], it means the first and third parameters are counted as text words (parser
status 1) whereas the second is ignored (parser status 0). Another case is \renewcommand which is defined
as [-3,-2]: the first parameter is to be read without interpreting the contents (which is going to be a macro
name whose macro handling rules should not be applied here), and the second parameter should be ignored
without requiring that begin–end groups be balanced. The different parsing states are:

0: ignore text, i.e. do not count, but will still parse the code;

1: count as text (i.e. count words);

2: count as header text;

3: count as float/caption text;

−1: float, ignore text but look for floatinclude macros;

−2: stronger ignore which ignore begin–end groups, e.g. to use in macro definitions where begin–end
groups need not be balanced;

−3: even stronger ignore, handles macros as isolated tokens without handling their parameters, to use
with macro definitions like \newcommand and \def;

−9: preamble, ignore text but look for preambleinclude macros.

Here are some examples together with corresponding macro definitions:

%TC:macroword \TeXcount 1

\newcommand\TeXcount{{\TeX}count}

%TC:macro \NB 1

\newcommand\NB[1]{\marginpar{#1}}

%TC:header \newsection [2,0]

\newcommand\newsection[2]{\section{#1}\label{sec:#2}}

%TC:group theorem 0 1

\newtheorem{theorem}{Theorem}

The predefined rules can easily be read off the script file: they are hash maps defined at the beginning of
the script with names TeXmacro, TeXheader, etc.

6 License
The TEXcount package—script and accompanying documents—is distributed under the LATEX Project Pub-
lic License (LPPL)

9

http://www.latex-project.org/lppl.txt

which grants you, the user, the right to use, modify and distribute the script. However, if the script is
modified, you must change its name or use other technical means to avoid confusion with the original
script.

10

